zbMATH — the first resource for mathematics

Periodic solutions of nonlinear differential systems by the method of averaging. (English) Zbl 07250673
Summary: In many engineering problems, when studying the existence of periodic solutions to a nonlinear system with a small parameter via the local averaging theorem, it is necessary to verify some properties of the fundamental solution matrix to the corresponding linearized system along the periodic solution of the unperturbed system. But sometimes, it is difficult or it requires a lot of calculations. In this paper, a few simple and effective methods are introduced to investigate the existence of periodic solutions for a kind of small parametric systems. In order to prove the existence of periodic solutions by these ideas, we also introduce a forced autoparametric vibrating system and a generalized model of the tuned mass absorber with pendulum discussed by P. Brzeski et al. [Commun. Nonlinear Sci. Numer. Simul. 19, No. 1, 298–310 (2014; Zbl 1344.70009)]. Then, we also propose an averaging method to study the existence of periodic solutions.
34C29 Averaging method for ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
Full Text: DOI
[1] Bajaj, A. K.; Chang, S. I.; Johnson, J. M., Amplitude modulated dynamics of a resonantly excited autoparametric two degree-of-freedom system, Nonlinear Dyn. 5 (1994), 433-457
[2] Brzeski, P.; Karmazyn, A.; Perlikowski, P., Synchronization of two forced double-well Duffing oscillators with attached pendulums, J. Theor. Appl. Mech. 51 (2013), 603-613
[3] Brzeski, P.; Perlikowski, P.; Kapitaniak, T., Numerical optimization of tuned mass absorbers attached to strongly nonlinear Duffing oscillator, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 298-310
[4] Buică, A.; Françoise, J.-P.; Llibre, J., Periodic solutions of nonlinear periodic differential systems with a small parameter, Commun. Pure Appl. Anal. 6 (2007), 103-111
[5] Buică, A.; Giné, J.; Llibre, J., A second order analysis of the periodic solutions for nonlinear periodic differential systems with a small parameter, Physica D 241 (2012), 528-533
[6] Bustos, M. T. de; López, M. A.; Martínez, R., On the periodic solutions of a linear chain of three identical atoms, Nonlinear Dyn. 76 (2014), 893-903
[7] Euzébio, R. D.; Llibre, J., Periodic solutions of {\it El Niño} model through the Vallis differential system, Discrete Contin. Dyn. Syst. 34 (2014), 3455-3469
[8] Gus’kov, A. M.; Panovko, G. Ya.; Bin, C. V., Analysis of the dynamics of a pendulum vibration absorber, J. Mach. Manuf. Reliab. 37 (2008), 321-329
[9] Hatwal, H.; Mallik, A. K.; Ghosh, A., Nonlinear vibrations of a harmonically excited autoparametric system, J. Sound Vib. 81 (1982), 153-164
[10] Hatwal, H.; Mallik, A. K.; Ghosh, A., Forced nonlinear oscillations of an autoparametric system. I. Periodic responses, J. Appl. Mech. 50 (1983), 657-662
[11] Hatwal, H.; Mallik, A. K.; Ghosh, A., Forced nonlinear oscillations of an autoparametric system. II. Chaotic responses, J. Appl. Mech. 50 (1983), 663-668
[12] Huang, R.; Chu, D., Relative perturbation analysis for eigenvalues and singular values of totally nonpositive matrices, SIAM J. Matrix Anal. Appl. 36 (2015), 476-495
[13] Lembarki, F. E.; Llibre, J., Periodic orbits for the generalized Yang-Mills Hamiltonian system in dimension 6, Nonlinear Dyn. 76 (2014), 1807-1819
[14] Li, Z.; Liu, Q.; Zhang, K., Harmonic motions of a weakly forced autoparametric vibrating system, J. Phys., Conf. Ser. 1053 (2018), Article ID 012088
[15] Liu, Q.; Cai, L., Averaging methods for nonlinear systems with a small parameter via reduction and topological degree, Nonlinear Anal., Real World Appl. 45 (2019), 461-471
[16] Liu, Q.; Qian, D., Modulated amplitude waves with nonzero phases in Bose-Einstein condensates, J. Math. Phys. 52 (2011), Article ID 082702, 11 pages
[17] Liu, Q.; Qian, D., Construction of modulated amplitude waves via averaging in collisionally inhomogeneous Bose-Einstein condensates, J. Nonlinear Math. Phys. 19 (2012), 255-268
[18] Liu, Q.; Xing, M.; Li, X.; Wang, C., Unstable and exact periodic solutions of three-particles time-dependent FPU chains, Chin. Phys. B 24 (2015), 246-252
[19] Llibre, J.; Moeckel, R.; Simó, C., Central Configurations, Periodic Orbits, and Hamiltonian Systems, Advanced Courses in Mathematics, CRM Barcelona. Birkhäuser/Springer, Basel (2015)
[20] Llibre, J.; Świrszcz, G., On the limit cycles of polynomial vector fields, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 18 (2011), 203-214
[21] Llibre, J.; Yu, J.; Zhang, X., Limit cycles for a class of third-order differential equations, Rocky Mt. J. Math. 40 (2010), 581-594
[22] Llibre, J.; Zhang, X., On the Hopf-zero bifurcation of the Michelson system, Nonlinear Anal., Real World Appl. 12 (2011), 1650-1653
[23] Rabanal, R., On the limit cycles of a class of Kukles type differential systems, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 95 (2014), 676-690
[24] Verhulst, F., Nonlinear Differential Equations and Dynamical Systems, Universitext. Springer, Berlin (1996)
[25] Vyas, A.; Bajaj, A. K., Dynamics of autoparametric vibration absorbers using multiple pendulums, J. Sound Vib. 246 (2001), 115-135
[26] Vyas, A.; Bajaj, A. K.; Raman, A., Dynamics of structures with wideband autoparametric vibration absorbers: theory, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 460 (2004), 1547-1581
[27] Wang, G.; Zhou, Z.; Zhu, S.; Wang, S., Ordinary Differential Equations, Higher Education Press, Beijing (2006), Chinese
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.