Wang, Huoyun Equicontinuity, shadowing and distality in general topological spaces. (English) Zbl 1513.37003 Czech. Math. J. 70, No. 3, 711-726 (2020). Summary: We consider the notions of equicontinuity point, sensitivity point and so on from a topological point of view. Many of these notions can be sensibly defined either in terms of (finite) open covers or uniformities. We show that for the notions of equicontinuity point and sensitivity point, Hausdorff or uniform versions coincide in compact Hausdorff spaces and are equivalent to the standard definitions stated in terms of a metric in compact metric spaces. We prove that a uniformly chain transitive map with uniform shadowing property on a compact Hausdorff uniform space is either uniformly equicontinuous or it has no uniform equicontinuity points. Cited in 3 Documents MSC: 37B02 Dynamics in general topological spaces 37B65 Approximate trajectories, pseudotrajectories, shadowing and related notions for topological dynamical systems Keywords:shadowing; chain transitive; equicontinuity; uniform space × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Akin, E.; Auslander, J.; Berg, K., When is a transitive map chaotic?, Convergence in Ergodic Theory and Probability Ohio State University Mathematical Research Institute Publications 5, de Gruyter, Berlin (1996), 25-40 · Zbl 0861.54034 · doi:10.1515/9783110889383 [2] Akin, E.; Kolyada, S., Li-Yorke sensitivity, Nonlinearity 16 (2003), 1421-1433 · Zbl 1045.37004 · doi:10.1088/0951-7715/16/4/313 [3] Auslander, J.; Greschonig, G.; Nagar, A., Reflections on equicontinuity, Proc. Am. Math. Soc. 142 (2014), 3129-3137 · Zbl 1327.37005 · doi:10.1090/S0002-9939-2014-12034-X [4] Auslander, J.; Yorke, J. A., Interval maps, factors of maps, and chaos, Tohoku Math. J., II. Ser. 32 (1980), 177-188 · Zbl 0448.54040 · doi:10.2748/tmj/1178229634 [5] Bergelson, V., Minimal idempotents and ergodic Ramsey theory, Topics in Dynamics and Ergodic Theory London Mathematical Society Lecture Note Series 310, Cambridge University Press, Cambridge (2003), 8-39 · Zbl 1039.05063 · doi:10.1017/CBO9780511546716.004 [6] Blanchard, F.; Glasner, E.; Kolyada, S.; Maass, A., On Li-York pairs, J. Reine Angew. Math. 547 (2002), 51-68 · Zbl 1059.37006 · doi:10.1515/crll.2002.053 [7] Brian, W., Abstract \(\omega \)-limit sets, J. Symb. Log. 83 (2018), 477-495 · Zbl 1406.54020 · doi:10.1017/jsl.2018.11 [8] Ceccherini-Silberstein, T.; Coornaert, M., Sensitivity and Devaney’s chaos in uniform spaces, J. Dyn. Control Syst. 19 (2013), 349-357 · Zbl 1338.37015 · doi:10.1007/s10883-013-9182-7 [9] Das, P.; Das, T., Various types of shadowing and specification on uniform spaces, J. Dyn. Control Syst. 24 (2018), 253-267 · Zbl 1385.37013 · doi:10.1007/s10883-017-9388-1 [10] Dastjerdi, D. A.; Hosseini, M., Shadowing with chain transitivity, Topology Appl. 156 (2009), 2193-2195 · Zbl 1178.54018 · doi:10.1016/j.topol.2009.04.021 [11] Ellis, D.; Ellis, R.; Nerurkar, M., The topological dynamics of semigroup actions, Trans. Am. Math. Soc. 353 (2001), 1279-1320 · Zbl 0976.54039 · doi:10.1090/S0002-9947-00-02704-5 [12] Engelking, R., General Topology, Sigma Series in Pure Mathematics 6, Heldermann, Berlin (1989) · Zbl 0684.54001 [13] Glasner, E.; Weiss, B., Sensitive dependence on initial conditions, Nonlinearity 6 (1993), 1067-1075 · Zbl 0790.58025 · doi:10.1088/0951-7715/6/6/014 [14] Good, C.; Macías, S., What is topological about topological dynamics?, Discrete Contin. Dyn. Syst. 38 (2018), 1007-1031 · Zbl 1406.54021 · doi:10.3934/dcds.2018043 [15] Hindman, N.; Strauss, D., Algebra in the Stone-Čech Compactification: Theory and Applications, De Gruyter Expositions in Mathematics 27, Walter de Gruyter, Berlin (1998) · Zbl 0918.22001 · doi:10.1515/9783110809220 [16] Hood, B. M., Topological entropy and uniform spaces, J. Lond. Math. Soc., II. Ser. 8 (1974), 633-641 · Zbl 0291.54051 · doi:10.1112/jlms/s2-8.4.633 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.