zbMATH — the first resource for mathematics

PushTASEP in inhomogeneous space. (English) Zbl 1453.82058
Summary: We consider the PushTASEP (pushing totally asymmetric simple exclusion process, also sometimes called long-range TASEP) with the step initial configuration evolving in an inhomogeneous space. That is, the rate of each particle’s jump depends on the location of this particle. We match the distribution of the height function of this PushTASEP with Schur processes. Using this matching and determinantal structure of Schur processes, we obtain limit shape and fluctuation results which are typical for stochastic particle systems in the Kardar-Parisi-Zhang universality class. PushTASEP is a close relative of the usual TASEP. In inhomogeneous space the former is integrable, while the integrability of the latter is not known.

82C22 Interacting particle systems in time-dependent statistical mechanics
60C05 Combinatorial probability
35Q82 PDEs in connection with statistical mechanics
Full Text: DOI Euclid
[1] E. Andjel and H. Guiol,Long-range exclusion processes, generator and invariant measures, Ann. Probab.33(2005), no. 6, 2314-2354, arXiv:arXiv:math/0411655 [math.PR]. MR-2184098 · Zbl 1099.60064
[2] E. Andjel and C. Kipnis,Derivation of the hydrodynamical equation for the zero-range interaction process, Ann. Probab.12(1984), no. 2, 325-334. MR-0735841 · Zbl 0536.60097
[3] T. Assiotis,Determinantal structures in space inhomogeneous dynamics on interlacing arrays, Ann. Inst. H. Poincaré21(2020), 909-940, arXiv:arXiv:1910.09500 [math.PR]. MR-4062464 · Zbl 1439.82033
[4] J. Baik,Painlevé formulas of the limiting distributions for nonnull complex sample covariance matrices, Duke Math J.133(2006), no. 2, 205-235, arXiv:arXiv:math/0504606 [math.PR]. MR-2225691 · Zbl 1139.33006
[5] J. Baik, P. Deift, and K. Johansson,On the distribution of the length of the longest increasing subsequence of random permutations, Jour. AMS12(1999), no. 4, 1119-1178, arXiv:arXiv:math/9810105 [math.CO]. MR-1682248 · Zbl 0932.05001
[6] Yu. Baryshnikov,GUEs and queues, Probab. Theory Relat. Fields119(2001), 256-274. MR-1818248 · Zbl 0980.60042
[7] R. Basu, S. Sarkar, and A. Sly,Invariant measures for tasep with a slow bond, arXiv preprint (2017), arXiv:arXiv:1704.07799.
[8] R. Basu, V. Sidoravicius, and A. Sly,Last passage percolation with a defect line and the solution of the slow bond problem, arXiv preprint (2014), arXiv:arXiv:1408.3464 [math.PR].
[9] Folkmar Bornemann,On the numerical evaluation of Fredholm determinants, Math. Comp. 79(2010), no. 270, 871-915, arXiv:arXiv:0804.2543 [math.NA]. MR-2600548 · Zbl 1208.65182
[10] A. Borodin,Determinantal point processes, Oxford Handbook of Random Matrix Theory (G. Akemann, J. Baik, and P. Di Francesco, eds.), Oxford University Press, 2011, arXiv:arXiv:0911.1153 [math.PR]. MR-2932631
[11] A. Borodin,Stochastic higher spin six vertex model and macdonald measures, Jour. Math. Phys.59(2018), no. 2, 023301, arXiv:arXiv:1608.01553 [math-ph]. MR-3760963 · Zbl 1382.82029
[12] A. Borodin, A. Bufetov, and M. Wheeler,Between the stochastic six vertex model and halllittlewood processes, arXiv preprint (2016), arXiv:arXiv:1611.09486 [math.PR]. To appear in Jour. Comb. Th. A.
[13] A. Borodin and I. Corwin,Macdonald processes, Probab. Theory Relat. Fields158(2014), 225-400, arXiv:arXiv:1111.4408 [math.PR]. MR-3152785 · Zbl 1291.82077
[14] A. Borodin, I. Corwin, and V. Gorin,Stochastic six-vertex model, Duke J. Math.165(2016), no. 3, 563-624, arXiv:arXiv:1407.6729 [math.PR]. MR-3466163 · Zbl 1343.82013
[15] A. Borodin and P. Ferrari,Large time asymptotics of growth models on space-like paths I: PushASEP, Electron. J. Probab.13(2008), 1380-1418, arXiv:arXiv:0707.2813 [math-ph]. MR-2438811 · Zbl 1187.82084
[16] A. Borodin and P. Ferrari,Anisotropic growth of random surfaces in 2+1 dimensions, Commun. Math. Phys.325(2014), 603-684, arXiv:arXiv:0804.3035 [math-ph]. MR-3148098 · Zbl 1303.82015
[17] A. Borodin, P. Ferrari, and T. Sasamoto,Large Time Asymptotics of Growth Models on Spacelike Paths II: PNG and Parallel TASEP, Commun. Math. Phys.283(2008), no. 2, 417-449, arXiv:arXiv:0707.4207 [math-ph]. MR-2430639 · Zbl 1201.82030
[18] A. Borodin, P. Ferrari, and T. Sasamoto,Two speed tasep, J. Stat. Phys137(2009), no. 5, 936-977, arXiv:arXiv:0904.4655 [math-ph]. MR-2570757 · Zbl 1183.82062
[19] A. Borodin and V. Gorin,Markov processes of infinitely many nonintersecting random walks, Probab. Theory Relat. Fields155(2013), no. 3-4, 935-997, arXiv:arXiv:1106.1299 [math.PR]. MR-3034797 · Zbl 1278.60113
[20] A. Borodin, A. Okounkov, and G. Olshanski,Asymptotics of Plancherel measures for symmetric groups, Jour. AMS13(2000), no. 3, 481-515, arXiv:arXiv:math/9905032 [math.CO]. MR1758751 · Zbl 0938.05061
[21] A. Borodin and L. Petrov,Nearest neighbor Markov dynamics on Macdonald processes, Adv. Math.300(2016), 71-155, arXiv:arXiv:1305.5501 [math.PR]. MR-3534830 · Zbl 1356.60161
[22] A. Borodin and L. Petrov,Inhomogeneous exponential jump model, Probab. Theory Relat. Fields172(2018), 323-385, arXiv:arXiv:1703.03857 [math.PR]. MR-3851834 · Zbl 1412.82027
[23] A. Bufetov and K. Matveev,Hall-littlewood rsk field, Selecta Math.24(2018), no. 5, 4839- 4884, arXiv:arXiv:1705.07169 [math.PR]. MR-3874706 · Zbl 1400.05261
[24] A. Bufetov, M. Mucciconi, and L. Petrov,Yang-baxter random fields and stochastic vertex models, arXiv preprint (2019), arXiv:arXiv:1905.06815 [math.PR]. To appear in Adv. Math.
[25] A. Bufetov and L. Petrov,Yang-Baxter field for spin Hall-Littlewood symmetric functions, Forum Math. Sigma7(2019), e39, arXiv:arXiv:1712.04584 [math.PR]. MR-4031106 · Zbl 07125843
[26] J. Calder,Directed last passage percolation with discontinuous weights, Jour. Stat. Phys.158 (2015), no. 4, 903-949. MR-3311485 · Zbl 1316.82014
[27] I. Corwin,The Kardar-Parisi-Zhang equation and universality class, Random Matrices Theory Appl.1(2012), 1130001, arXiv:arXiv:1106.1596 [math.PR]. MR-2930377 · Zbl 1247.82040
[28] B. Derrida, J. Lebowitz, E. Speer, and H. Spohn,Dynamics of an anchored Toom interface, J. Phys. A24(1991), no. 20, 4805. MR-1131256 · Zbl 0759.60104
[29] P. Diaconis and J.A. Fill,Strong stationary times via a new form of duality, Ann. Probab.18 (1990), 1483-1522. MR-1071805 · Zbl 0723.60083
[30] A.B. Dieker and J. Warren,Determinantal transition kernels for some interacting particles on the line, Annales de l’Institut Henri Poincaré44(2008), no. 6, 1162-1172, arXiv:arXiv:0707.1843 [math.PR]. MR-2469339 · Zbl 1181.60144
[31] M. Duits,The Gaussian free field in an interlacing particle system with two jump rates, Comm. Pure Appl. Math.66(2013), no. 4, 600-643, arXiv:arXiv:1105.4656 [math-ph]. MR-3020314 · Zbl 1259.82091
[32] P. Ferrari,The universal Airy1and Airy2processes in the Totally Asymmetric Simple Exclusion Process, Integrable Systems and Random Matrices: In Honor of Percy Deift (J. Baik, T. Kriecherbauer, L.-C. Li, K. T.-R. McLaughlin, and C. Tomei, eds.), Contemporary Math., AMS, 2008, arXiv:arXiv:math-ph/0701021, pp. 321-332. MR-2411915
[33] P. Ferrari and H. Spohn,Step fluctuations for a faceted crystal, J. Stat. Phys113(2003), no. 1, 1-46, arXiv:arXiv:cond-mat/0212456 [cond-mat.stat-mech]. MR-2012974 · Zbl 1116.82331
[34] N. Georgiou, R. Kumar, and T. Seppäläinen,TASEP with discontinuous jump rates, ALEA Lat. Am. J. Probab. Math. Stat.7(2010), 293-318, arXiv:arXiv:1003.3218 [math.PR]. MR-2732897 · Zbl 1276.60113
[35] P. Ghosal,Hall-Littlewood-PushTASEP and its KPZ limit,arXiv preprint (2017), arXiv:arXiv:1701.07308 [math.PR].
[36] H. Guiol,Un résultat pour le processus d’exclusion à longue portée [a result for the longrange exclusion process], Annales de l’Institut Henri Poincare (B) Probability and Statistics 33(1997), no. 4, 387-405. MR-1465795 · Zbl 1002.60584
[37] L.-H. Gwa and H. Spohn,Six-vertex model, roughened surfaces, and an asymmetric spin Hamiltonian, Phys. Rev. Lett.68(1992), no. 6, 725-728. MR-1147356 · Zbl 0969.82526
[38] J.B. Hough, M. Krishnapur, Y. Peres, and B. Virág,Determinantal processes and independence, Probability Surveys3(2006), 206-229, arXiv:arXiv:math/0503110 [math.PR]. MR-2216966 · Zbl 1189.60101
[39] K. Johansson,Shape fluctuations and random matrices, Commun. Math. Phys.209(2000), no. 2, 437-476, arXiv:arXiv:math/9903134 [math.CO]. MR-1737991 · Zbl 0969.15008
[40] A. Knizel, L. Petrov, and A. Saenz,Generalizations of tasep in discrete and continuous inhomogeneous space, Commun. Math. Phys.372(2019), 797-864, arXiv:arXiv:1808.09855 [math.PR]. MR-4034777 · Zbl 1439.60093
[41] C. Landim,Hydrodynamical limit for space inhomogeneous one-dimensional totally asymmetric zero-range processes, Ann. Probab.24(1996), no. 2, 599-638. MR-1404522 · Zbl 0862.60095
[42] T. Liggett,Interacting Particle Systems, Springer-Verlag, Berlin, 2005. MR-2108619 · Zbl 1103.82016
[43] C. MacDonald and J. Gibbs,Concerning the kinetics of polypeptide synthesis on polyribosomes, Biopolymers7(1969), no. 5, 707-725.
[44] C. MacDonald, J. Gibbs, and A. Pipkin,Kinetics of biopolymerization on nucleic acid templates, Biopolymers6(1968), no. 1, 1-25.
[45] I.G. Macdonald,Symmetric functions and Hall polynomials, 2nd ed., Oxford University Press, 1995. MR-1354144 · Zbl 0824.05059
[46] N. O’Connell,A path-transformation for random walks and the Robinson-Schensted correspondence, Trans. AMS355(2003), no. 9, 3669-3697. MR-1990168 · Zbl 1031.05132
[47] N. O’Connell,Conditioned random walks and the RSK correspondence, J. Phys. A36(2003), no. 12, 3049-3066. MR-1986407 · Zbl 1035.05097
[48] N. O’Connell and Y. Pei,A q-weighted version of the Robinson-Schensted algorithm, Electron. J. Probab.18(2013), no. 95, 1-25, arXiv:arXiv:1212.6716 [math.CO]. MR-3126578
[49] A. Okounkov,Infinite wedge and random partitions, Selecta Math.7(2001), no. 1, 57-81, arXiv:arXiv:math/9907127 [math.RT]. MR-1856553 · Zbl 0986.05102
[50] A. Okounkov,Symmetric functions and random partitions, Symmetric functions 2001: Surveys of Developments and Perspectives (S. Fomin, ed.), Kluwer Academic Publishers, 2002, arXiv:arXiv:math/0309074 [math.CO]. MR-2059364
[51] A. Okounkov and N. Reshetikhin,Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram, Jour. AMS16(2003), no. 3, 581-603, arXiv:arXiv:math/0107056 [math.CO]. MR-1969205 · Zbl 1009.05134
[52] M. Prähofer and H. Spohn,Scale invariance of the PNG droplet and the Airy process, J. Stat. Phys.108(2002), 1071-1106, arXiv:arXiv:math.PR/0105240. MR-1933446 · Zbl 1025.82010
[53] J. Quastel and H. Spohn,The one-dimensional KPZ equation and its universality class, J. Stat. Phys160(2015), no. 4, 965-984, arXiv:arXiv:1503.06185 [math-ph]. MR-3373647 · Zbl 1327.82069
[54] A. Rákos and G. Schütz,Current distribution and random matrix ensembles for an integrable asymmetric fragmentation process, J. Stat. Phys118(2005), no. 3-4, 511-530, arXiv:arXiv:cond-mat/0405464 [cond-mat.stat-mech]. MR-2123646 · Zbl 1126.82330
[55] F. Rezakhanlou,Hydrodynamic limit for attractive particle systems onZd, Commun. Math. Phys.140(1991), no. 3, 417-448. MR-1130693 · Zbl 0738.60098
[56] L. Rolla and A. Teixeira,Last passage percolation in macroscopically inhomogeneous media, Electron. Commun. Probab.13(2008), 131-139. MR-2386069 · Zbl 1189.60184
[57] H. Rost,Nonequilibrium behaviour of a many particle process: density profile and local equilibria, Z. Wahrsch. Verw. Gebiete58(1981), no. 1, 41-53. MR-0635270 · Zbl 0451.60097
[58] T. Seppäläinen,Existence of hydrodynamics for the totally asymmetric simple k-exclusion process, Ann. Probab.27(1999), no. 1, 361-415. MR-1681094 · Zbl 0947.60088
[59] B. Simon,Trace ideals and their applications, second edition, Mathematical Surveys and Monographs, vol. 120, AMS, 2005. MR-2154153 · Zbl 1074.47001
[60] A. Soshnikov,Determinantal random point fields, Russian Mathematical Surveys55(2000), no. 5, 923-975, arXiv:arXiv:math/0002099 [math.PR]. MR-1799012 · Zbl 0991.60038
[61] F. Spitzer,Interaction of Markov processes, Adv. Math.5(1970), no. 2, 246-290. MR-0268959 · Zbl 0312.60060
[62] C. Tracy and H. Widom,Level-spacing distributions and the Airy kernel, Physics Letters B 305(1993), no. 1, 115-118, arXiv:arXiv:hep-th/9210074. MR-1215903 · Zbl 0789.35152
[63] C. Tracy and H. Widom,Level-spacing distributions and the Airy kernel, Commun. Math. Phys.159(1994), no. 1, 151-174, arXiv:arXiv:hep-th/9211141. MR-1257246 · Zbl 0789.35152
[64] A.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.