×

Convergence to scale-invariant Poisson processes and applications in Dickman approximation. (English) Zbl 1459.60106

Summary: We study weak convergence of a sequence of point processes to a scale-invariant simple point process. For a deterministic sequence \((z_n)_{n\in \mathbb{N}}\) of positive real numbers increasing to infinity as \(n \to \infty\) and a sequence \((X_k)_{k\in \mathbb{N}}\) of independent non-negative integer-valued random variables, we consider the sequence of point processes \[ \nu_n=\sum_{k=1}^{\infty }X_k \delta_{z_k/z_n}, \quad n \in \mathbb{N}, \] and prove that, under some general conditions, it converges vaguely in distribution to a scale-invariant Poisson process \(\eta_c\) on \((0,\infty )\) with the intensity measure having the density \(ct^{-1}, t\in (0,\infty)\). An important motivating example from probabilistic number theory relies on choosing \(X_k \sim{\text{Geom}}(1-1/p_k)\) and \(z_k=\log p_k, k \in \mathbb{N} \), where \((p_k)_{k \in \mathbb{N}}\) is an enumeration of the primes in increasing order. We derive a general result on convergence of the integrals \(\int_0^1 t \nu_n(dt)\) to the integral \(\int_0^1 t \eta_c(dt)\), the latter having a generalized Dickman distribution, thus providing a new way of proving Dickman convergence results.
We extend our results to the multivariate setting and provide sufficient conditions for vague convergence in distribution for a broad class of sequences of point processes obtained by mapping the points from \((0,\infty )\) to \(\mathbb{R}^d\) via multiplication by i.i.d. random vectors. In addition, we introduce a new class of multivariate Dickman distributions which naturally extends the univariate setting.

MSC:

60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
60F05 Central limit and other weak theorems
60G57 Random measures

References:

[1] Arras, B., Mijoule, G., Poly, G. and Swan, Y.: A new approach to the Stein-Tikhomirov method: with applications to the second Wiener chaos and Dickman convergence. arXiv preprint arXiv:1605.06819, (2016).
[2] Arratia, R.: On the central role of scale invariant Poisson processes on \((0,\infty )\). In Microsurveys in Discrete Probability (Princeton, NJ, 1997), Amer. Math. Soc., Providence, RI, (1998), 21-41. · Zbl 0916.60045
[3] Arratia, R.: Personal communications, (2017).
[4] Arratia, R., Barbour, A. D. and Tavaré, S.: Logarithmic Combinatorial Structures: a Probabilistic Approach. European Mathematical Society (EMS), Zürich, 2003. · Zbl 1040.60001
[5] Arratia, R., Garibaldi, S. and Kilian, J.: Asymptotic distribution for the birthday problem with multiple coincidences, via an embedding of the collision process. Random Structures Algorithms, 48, (2016), 480-502. · Zbl 1376.60017 · doi:10.1002/rsa.20591
[6] Barbour, A. D. and Nietlispach, B.: Approximation by the Dickman distribution and quasi-logarithmic combinatorial structures. Electron. J. Probab., 16, (2011), 880-902. · Zbl 1225.60018 · doi:10.1214/EJP.v16-881
[7] Basrak, B., Planinic, H. and Soulier, P.: An invariance principle for sums and record times of regularly varying stationary sequences. Probab. Theory Related Fields, 172, (2018), 869-914. · Zbl 1404.60043 · doi:10.1007/s00440-017-0822-9
[8] Bhatt, A. G. and Roy, R.: On a random directed spanning tree. Adv. in Appl. Probab., 36, (2004), 19-42. · Zbl 1055.60002 · doi:10.1239/aap/1077134462
[9] Bhattacharjee, C. and Goldstein, L.: Dickman approximation in simulation, summations and perpetuities. Bernoulli, 25, (2019), 2758-2792. · Zbl 1428.62075 · doi:10.3150/18-BEJ1070
[10] Covo, S.: On approximations of small jumps of subordinators with particular emphasis on a Dickman-type limit. J. Appl. Probab., 46, (2009), 732-755. · Zbl 1186.60041 · doi:10.1239/jap/1253279849
[11] Daley, D. J. and Vere-Jones, D.: An Introduction to the Theory of Point Processes. Vol. I: Elementary Theory and Methods. Springer, New York, second edition, 2003. · Zbl 1026.60061
[12] Daley, D. J. and Vere-Jones, D.: An Introduction to the Theory of Point Processes. Vol. II: General Theory and Structure. Springer, New York, second edition, 2008. · Zbl 1159.60003
[13] Dickman, K.: On the frequency of numbers containing prime factors of a certain relative magnitude. Arkiv for matematik, astronomi och fysik, 22, (1930), 1-14. · JFM 56.0178.04
[14] Dusart, P.: The \(k\) th prime is greater than \(k(\ln k+\ln \ln k-1)\) for \(k\geq 2\). Math. Comp., 68(225), (1999), 411-415. · Zbl 0913.11039 · doi:10.1090/S0025-5718-99-01037-6
[15] Goldstein, L.: Non-asymptotic distributional bounds for the Dickman approximation of the running time of the Quickselect algorithm. Electron. J. Probab., 23, (2018), 13 pp. · Zbl 1403.60026 · doi:10.1214/18-EJP227
[16] Hwang, H. K. and Tsai, T. H.: Quickselect and the Dickman function. Combin. Probab. Comput., 11, (2002), 353-371. · Zbl 1008.68044 · doi:10.1017/S0963548302005138
[17] Kallenberg, O.: Characterization and convergence of random measures and point processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, (27), (1973), 9-21. · Zbl 0253.60037 · doi:10.1007/BF00736004
[18] Kallenberg, O.: Foundations of Modern Probability. Springer, New York, second edition, 2002. · Zbl 0996.60001
[19] Kallenberg, O.: Random Measures, Theory and Applications. Springer, Cham, 2017. · Zbl 1376.60003
[20] Lindskog, F., Resnick, S. I. and Roy, J.: Regularly varying measures on metric spaces: hidden regular variation and hidden jumps. Probab. Surv., 11, (2014), 270-314. · Zbl 1317.60007 · doi:10.1214/14-PS231
[21] Penrose, M. D. and Wade, A. R.: Random minimal directed spanning trees and Dickman-type distributions. Adv. in Appl. Probab., 36, (2004), 691-714. · Zbl 1068.60023 · doi:10.1017/S0001867800013069
[22] Pinsky, R. G.: On the strange domain of attraction to generalized Dickman distribution for sums of independent random variables. Electron. J. Probab., 23, (2018), 17 pp. · Zbl 1390.60092 · doi:10.1214/17-EJP126
[23] Pinsky, R. G.: A natural probabilistic model on the integers and its relation to Dickman-type distributions and Buchstab’s function. In Probability and Analysis in Interacting Physical Systems — in Honor of S.R.S. Varadhan, Springer, (2019), 267-294. · Zbl 1430.60029
[24] Sato, K. i.: Class \(L\) of multivariate distributions and its subclasses. J. Multivariate Anal., 10, (1980), 207-232. · Zbl 0425.60013 · doi:10.1016/0047-259X(80)90014-7
[25] Tao, T.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.