zbMATH — the first resource for mathematics

Computed tomography reconstruction using deep image prior and learned reconstruction methods. (English) Zbl 07252737
68T07 Artificial neural networks and deep learning
92C Physiological, cellular and medical topics
65J Numerical analysis in abstract spaces
Adam; GitHub; PyTorch
Full Text: DOI
[1] Adler J and Öktem O 2017 Solving ill-posed inverse problems using iterative deep neural networks Inverse Problems33 124007 · Zbl 1394.92070
[2] Adler J and Öktem O 2018 Deep Bayesian inversion (arXiv:1811.0591)
[3] Adler J and Öktem O 2018 Learned primal-dual reconstruction IEEE Trans. Med. Imaging37 1322-32
[4] Antun V, Renna F, Poon C, Adcock B and Hansen A C 2020 On instabilities of deep learning in image reconstruction and the potential costs of AI Proc. Natl Acad. Sci. (https://www.pnas.org/content/early/2020/05/08/1907377117/tab-article-info)
[5] Armato S G III et al 2011 The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans Med. Phys.38 915-31
[6] Arridge S, Maass P, Öktem O and Schönlieb C-B 2019 Solving inverse problems using data-driven models Acta Numerica28 1-174 · Zbl 1429.65116
[7] Bora A, Jalal A, Price E and Dimakis A G 2017 Compressed sensing using generative models Proc. 34th Int. Conf. on Machine Learning, ICML 2017(Sydney, NSW, Australia, 6-11 August 2017) pp 537-46
[8] Bubba T A, Kutyniok G, Lassas M, März M, Samek W, Siltanen S and Srinivasan V 2019 Learning the invisible: a hybrid deep learning-shearlet framework for limited angle computed tomography Inverse Problems35 064002 · Zbl 1416.92099
[9] Buzug T M 2008 Computed Tomography: From Photon Statistics to Modern Cone-Beam CT (Berlin, Heidelberg: Springer)
[10] Chakrabarty P and Maji S 2019 The spectral bias of the deep image prior (arXiv:1912.08905)
[11] Chen H, Zhang Y, Kalra M K, Lin F, Chen Y, Liao P, Zhou J and Wang G 2017 Low-dose CT with a residual encoder-decoder convolutional neural network IEEE Trans. Med. Imaging36 2524-35
[12] Cheng Z, Gadelha M, Maji S and Sheldon D 2019 A bayesian perspective on the deep image prior The IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)
[13] Denker A, Schmidt M, Leuschner J, Maass P and Behrmann J 2020 Conditional normalizing flows for low-dose computed tomography image reconstruction (arXiv:2006.06270)
[14] Dittmer S, Kluth T, Maass P and Otero Baguer D 2019 Regularization by architecture: a deep prior approach for inverse problems J. Math. Imaging Vis.62 456-70 · Zbl 1434.68505
[15] Donoho D L and Johnstone I M 1994 Ideal spatial adaptation by wavelet shrinkage Biometrika81 425-55 · Zbl 0815.62019
[16] Engl H W, Hanke M and Neubauer A 1996 Regularization of Inverse Problems (Dordrecht: Kluwer) Mathematics and its Applications vol 375
[17] Gandelsman Y, Shocher A and Irani M 2019 “Double-DIP”: Unsupervised image decomposition via coupled deep-image-priors 2019 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR) pp 11018-27
[18] Gong K, Catana C, Qi J and Li Q 2019 PET image reconstruction using deep image prior IEEE Trans. Med. Imaging38 1655-65
[19] Gottschling N M, Antun V, Adcock B and Hansen A C 2020 The troublesome kernel: why deep learning for inverse problems is typically unstable (arXiv:2001.01258)
[20] Gupta H, Jin K H, Nguyen H Q, McCann M T and Unser M 2018 CNN-based projected gradient descent for consistent CT image reconstruction IEEE Trans. Med. Imaging37 1440-53
[21] Hauptmann A, Lucka F, Betcke M, Huynh N, Adler J, Cox B, Beard P, Ourselin S and Arridge S 2018 Model-based learning for accelerated, limited-view 3-D photoacoustic tomography IEEE Trans. Med. Imaging37 1382-93
[22] He J, Wang Y and Ma J 2020 Radon inversion via deep learning IEEE Trans. Med. Imaging39 2076-87
[23] He K, Zhang X, Ren S and Sun J 2016 Deep residual learning for image recognition 2016 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) pp 770-8
[24] Heckel R and Soltanolkotabi M 2020 Denoising and regularization via exploiting the structural bias of convolutional generators Int. Conf. on Learning Representations
[25] Hofmann B, Kaltenbacher B, Pöschl C and Scherzer O 2007 A convergence rates result for tikhonov regularization in banach spaces with non-smooth operators Inverse Problems23 987-1010 · Zbl 1131.65046
[26] Hoyer S, Sohl-Dickstein J and Greydanus S 2019 Neural reparameterization improves structural optimization (arXiv:1909.04240)
[27] Jin K H, Gupta H, Yerly J, Stuber M and Unser M 2019 Time-dependent deep image prior for dynamic MRI (arXiv:1910.01684)
[28] Jin K H, McCann M T, Froustey E and Unser M 2017 Deep convolutional neural network for inverse problems in imaging IEEE Trans. Image Process.26 4509-22 · Zbl 1409.94275
[29] Kingma D P and Ba J 2015 Adam: a method for stochastic optimization 3rd Int. Conf. on Learning Representations, ICLR 2015(San Diego, CA, USA, May 7-9, 2015) ed Y Bengio and Y LeCun
[30] Knoll F et al 2020 fastMRI: a publicly available raw k-space and DICOM dataset of knee images for accelerated MR image reconstruction using machine learning Radiology. Artificial intelligence2 e190007
[31] Lempitsky V, Vedaldi A and Ulyanov D 2018 Deep image prior 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp 9446-54
[32] Leuschner J, Schmidt M, Otero Baguer D and Maass P 2019 The LoDoPaB-CT dataset: a benchmark dataset for low-dose CT reconstruction methods (arXiv:1910.01113)
[33] Leuschner J, Schmidt M and Erzmann D 2019 Deep inversion validation library https://github.com/jleuschn/dival
[34] Li H, Schwab J, Antholzer S and Haltmeier M 2020 NETT: Solving inverse problems with deep neural networks Inverse Problems (accepted manuscript) · Zbl 07211715
[35] Liu J, Sun Y, Xu X and Kamilov U S 2019 Image restoration using total variation regularized deep image prior ICASSP 2019—2019 IEEE Int. Conf. on Acoustics Speech and Signal Processing (ICASSP) pp 7715-9
[36] Louis A K 1989 Inverse und schlecht gestellte Probleme Vieweg+Teubner Verlag
[37] Lunz S, Öktem O and Schönlieb C-B 2018 Adversarial regularizers in inverse problems Proc. 32nd Int. Conf. on Neural Information Processing Systems, NIPS’18 Red Hook, NY, USA pp 8516-25
[38] Mataev G, Elad M and Milanfar P 2019 DeepRED: deep image prior powered by RED (arXiv:1903.10176)
[39] Zuhair Nashed M 1987 A new approach to classification and regularization of ill-posed operator equations Inverse and Ill-Posed Problems ed H W Engl and C W Groetsch (New York: Academic) pp 53-75
[40] Natterer F 2001 The mathematics of computerized tomography Classics in Applied Mathematics (Philadelphia: Society for Industrial and Applied Mathematics) · Zbl 0973.92020
[41] Paszke A et al 2017 Automatic differentiation in PyTorch NIPS 2017 Workshop on Autodiff
[42] Pelt D, Batenburg K and Sethian J 2018 Improving tomographic reconstruction from limited data using mixed-scale dense convolutional neural networks J. Imaging4 128
[43] Radon J 1986 On the determination of functions from their integral values along certain manifolds IEEE Trans. Med. Imaging5 170-6
[44] Rieder A 2003 Keine Probleme mit inversen Problemen: eine Einführung in ihre stabile Lösung (Braunschweig: Vieweg) · Zbl 1057.65035
[45] Ronneberger O, Fischer P and Brox T 2015 U-Net: convolutional networks for biomedical image segmentation Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015 ed N Navab, J Hornegger, W M Wells and A F Frangi (Berlin: Springer) pp 234-41
[46] Schwab J, Antholzer S and Haltmeier M 2019 Deep null space learning for inverse problems: convergence analysis and rates Inverse Problems35 025008 · Zbl 07027425
[47] Van Veen D, Jalal A, Soltanolkotabi M, Price E, Vishwanath S and Dimakis A G 2018 Compressed sensing with deep image prior and learned regularization (arXiv:1806.06438)
[48] Yang Q et al 2018 Low-dose CT image denoising using a generative adversarial network with wasserstein distance and perceptual loss IEEE Trans. Med. Imaging37 1348-57
[49] Zhu B, Liu J Z, Cauley S F, Rosen B R and Rosen M S 2018 Image reconstruction by domain-transform manifold learning Nature555 487-92
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.