×

Explicit port-Hamiltonian formulation of multi-bond graphs for an automated model generation. (English) Zbl 1448.93123

Summary: Port-Hamiltonian system theory is a well-known framework for the control of complex physical systems. The majority of port-Hamiltonian control design methods base on an explicit input-state-output port-Hamiltonian model for the system under consideration. However in the literature, little effort has been made towards a systematic, automatable derivation of such explicit models. In this paper, we present a constructive, formally rigorous method for an explicit port-Hamiltonian formulation of multi-bond graphs. Two conditions, one necessary and one sufficient, for the existence of an explicit port-Hamiltonian formulation of a multi-bond graph are given. We summarise our approach in an algorithm for the automated generation of an explicit port-Hamiltonian model from a given multi-bond graph. An academic example illustrates the results of this paper.

MSC:

93B70 Networked control
05C90 Applications of graph theory
93-10 Mathematical modeling or simulation for problems pertaining to systems and control theory

Software:

GitHub; PyPHS
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Batlle, C., Massana, I., & Simó, E. (2011). Representation of a general composition of Dirac structures. In 2011 50th IEEE Conference on Decision and Control and European Control Conference. (pp. 5199-5204).
[2] Bloch, A.; Crouch, P. E., Representations of Dirac structures on vector spaces and nonlinear L-C circuits, (Differential geometry and control. Differential geometry and control, Symposia in pure mathematics, 64 (1999), American Mathematical Society: American Mathematical Society Providence, Rhode Island), 103-117 · Zbl 0917.58008
[3] Borutzky, W., Bond graph methodology: development and analysis of multidisciplinary dynamic system models (2010), Springer: Springer London
[4] Donaire, A.; Junco, S., Derivation of input-state-output port-Hamiltonian systems from bond graphs, Simulation Modelling Practice and Theory, 17, 1, 137-151 (2009)
[5] Falaize, A.; Hélie, T., Passive guaranteed simulation of analog audio circuits: a port-Hamiltonian approach, Applied Sciences, 6, 10 (2016)
[6] Falaize, A.; Hélie, T., PyPHS (2019), https://github.com/pyphs/pyphs. (Accessed 03 July 2019)
[7] Golo, G.; Breedveld, P.; Maschke, B.; van der Schaft, A., Geometric formulation of generalized bond graph models - Part I: Generalized junction structuresTechnical report (2000), University of Twente: University of Twente Enschede
[8] Golo, G.; van der Schaft, A.; Breedveld, P.; Maschke, B., Hamiltonian formulation of bond graphs, (Nonlinear and hybrid systems in automotive control (2003), Springer: Springer London), 351-372
[9] Jacob, B.; Zwart, H., Linear port-Hamiltonian systems on infinite-dimensional spaces (2012), Springer Science & Business Media · Zbl 1254.93002
[10] Karnopp, D. C.; Margolis, D. L.; Rosenberg, R. C., System dynamics: Modeling, simulation, and control of mechatronic systems (2012), John Wiley & Sons, Incorporated: John Wiley & Sons, Incorporated Hoboken, USA
[11] Kotyczka, P., Local linear dynamics assignment in IDA-PBC, Automatica, 49, 4, 1037-1044 (2013) · Zbl 1284.93110
[12] Kotyczka, P.; Lefèvre, L., Discrete-time port-Hamiltonian systems based on Gauss-Legendre collocation, IFAC-PapersOnLine, 51, 3, 125-130 (2018)
[13] Le Gorrec, Y.; Zwart, H.; Maschke, B., Dirac structures and boundary control systems associated with skew-symmetric differential operators, SIAM Journal on Control and Optimization, 44, 5, 1864-1892 (2005) · Zbl 1108.93030
[14] Lopes, N., Approche passive pour la modélisation, la simulation et l’étude d’un banc de test robotisé pour les instruments de type cuivre (2016), Université Pierre et Marie Curie: Université Pierre et Marie Curie Paris, (Ph.D. thesis)
[15] Maschke, B.; van der Schaft, A., Port-controlled Hamiltonian systems: modelling origins and systemtheoretic properties, IFAC Proceedings Volumes, 25, 13, 359-365 (1992)
[16] Maschke, B.; van der Schaft, A.; Breedveld, P. C., An intrinsic Hamiltonian formulation of network dynamics: Non-standard Poisson structures and gyrators, Journal of the Franklin Institute, 329, 5, 923-966 (1992) · Zbl 0807.70015
[17] Mehl, C.; Mehrmann, V.; Sharma, P., Stability radii for linear Hamiltonian systems with dissipation under structure-preserving perturbations, SIAM Journal on Matrix Analysis and Applications, 37, 4, 1625-1654 (2016) · Zbl 1349.93332
[18] Ortega, R.; van der Schaft, A.; Castanos, F.; Astolfi, A., Control by interconnection and standard passivity-based control of port-Hamiltonian systems, IEEE Transactions on Automatic Control, 53, 11, 2527-2542 (2008) · Zbl 1367.93273
[19] Pfeifer, M.; Krebs, S.; Hofmann, F.; Kupper, M.; Hohmann, S., Interval input-state-output estimation for linear port-hamiltonian systems with application to power distribution systems, 2019 IEEE 58th Conference on Decision and Control (CDC), 3176-3183 (2019), IEEE
[20] Ramirez, H.; Zwart, H.; Le Gorrec, Y., Stabilization of infinite dimensional port-Hamiltonian systems by nonlinear dynamic boundary control, Automatica, 85, 61-69 (2017) · Zbl 1375.93106
[21] Rosenberg, R. C., State-space formulation for bond graph models of multiport systems, Journal of Dynamic Systems, Measurement, and Control, 93, 1, 35-40 (1971)
[22] van der Schaft, A., L2-gain and passivity techniques in nonlinear control (2016), Springer: Springer Cham, Switzerland
[23] van der Schaft, A.; Jeltsema, D., Port-Hamiltonian systems theory: An introductory overview, Foundations and Trends® in Systems and Control, 1, 2-3, 173-378 (2014)
[24] van der Schaft, A.; Maschke, B., The Hamiltonian formulation of energy conserving physical systems with external ports, AEU - Archiv für Elektronik und Übertragungstechnik, 49, 5-6, 362-371 (1995)
[25] van der Schaft, A.; Maschke, B., Hamiltonian formulation of distributed-parameter systems with boundary energy flow, Journal of Geometry and Physics, 42, 1-2, 166-194 (2002) · Zbl 1012.70019
[26] van der Schaft, A.; Maschke, B., Port-Hamiltonian systems on graphs, SIAM Journal on Control and Optimization, 51, 2, 906-937 (2013) · Zbl 1268.05099
[27] Vincent, B.; Hudon, N.; Lefèvre, L.; Dochain, D., Port-Hamiltonian observer design for plasma profile estimation in tokamaks, IFAC-PapersOnLine, 49, 24, 93-98 (2016)
[28] Wellstead, P. E., Introduction to physical system modelling (1979), Acadamic Press: Acadamic Press London
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.