zbMATH — the first resource for mathematics

Fully iterative ILU preconditioning of the unsteady Navier-Stokes equations for GPGPU. (English) Zbl 1442.65218
Summary: In this work we investigate the numerical difficulties that arise in optimizing the efficiency of Newtonian fluids simulations on a massively parallel computing hardware like a GPU. In particular, we will concentrate on the resulting algebraic problem. We will present an approximate, fully-iterative, ILU preconditioner and we will show that this solution is very efficient on a GPU if compared with an intrinsic massively parallel preconditioner like the diagonal preconditioner, which indeed goes faster than more robust techniques, like ILU, despite their strong decrease in the number of iterations. We refer to GMRES as the iterative scheme used to solve the linear system. In particular, we will deal with the solution of incompressible flows with variable density and we will investigate the interplay between Reynolds and Atwood numbers. We will show that the numerical simulation at medium-high Reynolds numbers produces linear systems whose matrices can be reasonably preconditioned with the diagonal preconditioner, while at low Reynolds numbers the higher viscosity of the fluid makes the diagonal preconditioner ineffective in the solution time requested from GMRES and, decreasing the Reynolds number, unable to let GMRES converge at all. In this situation, we will show how an adequate iterative approach to the parallel solution of the triangular systems that result from the ILU preconditioning, turns out to be robust and efficient. We will show numerical results for variable-density fluids, discretized with the scheme described in [C. Calgaro et al., J. Comput. Phys. 227, No. 9, 4671–4696 (2008; Zbl 1137.76037)], in classical benchmarks and, in particular, in the well-known Rayleigh-Taylor instability.

65M22 Numerical solution of discretized equations for initial value and initial-boundary value problems involving PDEs
65Y10 Numerical algorithms for specific classes of architectures
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI
[1] Cuthill, E.; McKee, J., Reducing the bandwidth of sparse symmetric matrices, (Proceedings of the 1969 24th National Conference, ACM ’69 (1969), ACM: ACM New York, NY, USA), 157-172
[2] Benzi, M., Preconditioning techniques for large linear systems: A survey, J. Comput. Phys., 182 (2002) · Zbl 1015.65018
[3] Anderson, E.; Saad, Y., Solving sparse triangular systems on parallel computers, Int. J. High Speed Comput., 1, 06 (1989)
[4] Saad, Y., Iterative methods for sparse linear systems, (Society for Industrial and Applied Mathematics (2003)), ISBN 9780898715347, 0898715342 · Zbl 1002.65042
[5] Naumov, M., Parallel Solution of Sparse Triangular Linear Systems in the Preconditioned Iterative Methods on the gpu (2011)
[6] Anzt, H.; Chow, E.; Dongarra, J., Iterative sparse triangular solves for preconditioning, (Träff, J. L.; Hunold, S.; Versaci, F., Euro-Par 2015: Parallel Processing (2015), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 650-661
[7] Polizzi, E.; Sameh, A. H., A parallel hybrid banded system solver: the spike algorithm, Parallel Matrix Algorithms and Applications, PMAA’04. Parallel Matrix Algorithms and Applications, PMAA’04, Parallel Comput., 32, 2, 177-194 (2006), http://dx.doi.org/101016/j.parco.200507005. URL http://www.sciencedirect.com/science/article/pii/S0167819105001353
[8] Chen, S. C.; Kuck, D. J.; Sameh, A. H., Practical parallel band triangular system solvers, ACM Trans. Math. Software, 4, 3, 270-277 (1978) · Zbl 0384.65013
[9] Chow, E.; Anzt, H.; Scott, J.; Dongarra, J., Using jacobi iterations and blocking for solving sparse triangular systems in incomplete factorization preconditioning, J. Parallel Distrib. Comput. (2018)
[10] Manguoglu, M.; Koyutürk, M.; Sameh, A.; Grama, A., Weighted matrix ordering and parallel banded preconditioners for iterative linear system solvers, SIAM J. Sci. Comput., 32, 01, 1201-1216 (2010) · Zbl 1213.65056
[11] Anzt, H.; Huckle, T. K.; Bräckle, J.; Dongarra, J., Incomplete sparse approximate inverses for parallel preconditioning, Parallel Comput., 71 (2017)
[12] Deolmi, G.; Marcuzzi, F., A parabolic inverse convection-diffusion-reaction problem solved using space-time localization and adaptivity, Appl. Math. Comput., 219, 16, 8435-8454 (2013) · Zbl 1288.65142
[13] Boyer, F.; Lapuerta, C.; Minjeaud, S.; Piar, B., A local adaptive refinement method with multigrid preconditionning illustrated by multiphase flows simulations, ESAIM: Proc., 27, 15-53 (2009), http//dx.doi.org/10.1051/proc/2009018. URL https://hal.archives-ouvertes.fr/hal-00307186 · Zbl 1167.76019
[14] Marcuzzi, F.; Cecchi, M. M.; Venturin, M., An anisotropic unstructured triangular adaptive mesh algorithm based on error and error gradient information, Math. Comput. Simulation, 78, 5-6, 645-652 (2008) · Zbl 1147.65019
[15] Chow, E.; Patel, A., Fine-grained parallel incomplete lu factorization, SIAM J. Sci. Comput., 37, 2, C169-C193 (2015) · Zbl 1320.65048
[17] Calgaro, C.; Chehab, J.-P.; Saad, Y., Incremental incomplete lu factorizations with applications, Numer. Linear Algebra Appl., 17 (2010) · Zbl 1240.65091
[18] Calgaro, C.; Chane-Kane, E.; Creusè, E.; Goudon, T., \(l^\infty \)-stability of vertex-based muscl finite volume schemes on unstructured grids: Simulation of incompressible flows with high density ratios, J. Comput. Phys., 229 (2010) · Zbl 1425.76157
[19] Anzt, H.; Chow, E.; Saak, J.; Dongarra, J., Updating incomplete factorization preconditioners for model order reduction, Numer. Algorithms, 73, 3, 611-630 (2016) · Zbl 1353.65022
[20] Lions, P.-L., (Mathematical topics in fluid mechanics. - Incompressible models. Mathematical topics in fluid mechanics. - Incompressible models, Oxford Lecture Series in Mathematics and Its Applications, 3, vol. 1 (1996), OUP), ISBN 9780198514879, 0198514875 · Zbl 0866.76002
[21] Strang, G., On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5, 09 (1968) · Zbl 0184.38503
[22] Calgaro, C.; Creusè, E.; Goudon, T., An hybrid finite volume-finite element method for variable density incompressible flows, J. Comput. Phys., 227 (2008) · Zbl 1137.76037
[23] Temam, R., Sur l’approximation de la solution des équations de navier-stokes par la méthode des pas fractionnaires (i), Arch. Ration. Mech. Anal., 32, 2 (1969) · Zbl 0195.46001
[24] Chorin, A. J., Numerical solution of the navier-stokes equations, Math. Comp., 22 (1968)
[25] Guermond, J.-L.; Salgado, A., A splitting method for incompressible flows with variable density based on a pressure poisson equation, J. Comput. Phys., 228 (2009) · Zbl 1159.76028
[26] Guermond, J.-L.; Salgado, A., Error analysis of a fractional time-stepping technique for incompressible flows with variable density, SIAM J. Numer. Anal., 49, 01 (2011) · Zbl 1241.76318
[27] Girault, V.; Raviart, P., (Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer Series in Computational Mathematics (1986), Springer-Verlag) · Zbl 0585.65077
[31] Tryggvason, G., Numerical simulations of the rayleigh-taylor instability, J. Comput. Phys., 75, 2, 253-282 (1988) · Zbl 0638.76056
[32] Guermond, J.-L.; Quartapelle, L., A projection fem for variable density incompressible flows, J. Comput. Phys., 165, 1, 167-188 (2000) · Zbl 0994.76051
[33] Jörg, L.; Petr, T., Convergence analysis of krylov subspace methods, GAMM-Mitt., 27, 2, 153-173 (2005) · Zbl 1071.65041
[34] George, A., Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 10, 04, 345-363 (1973) · Zbl 0259.65087
[35] Brooks, A. N.; Hughes, T. J., Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier-stokes equations, Comput. Methods Appl. Mech. Engrg., 32, 1, 199-259 (1982), http://dx.doi.org/101016/0045-7825(82)90071-8. URL http://www.sciencedirect.com/science/article/pii/0045782582900718 · Zbl 0497.76041
[36] Guermond, J.-L.; Marra, A.; Quartapelle, L., Subgrid stabilized projection method for 2d unsteady flows at high reynolds numbers, Comput. Methods Appl. Mech. Engrg., 195, 44, 5857-5876 (2006), http://dx.doi.org/10.1016/j.cma.2005.08.016. URL http://www.sciencedirect.com/science/article/pii/S0045782505004524 · Zbl 1121.76036
[37] Guermond, J.; Minev, P.; Shen, J., An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Engrg., 195, 09, 6011-6045 (2006) · Zbl 1122.76072
[38] Coppola-Owen, A. H.; Codina, R., Improving eulerian two-phase flow finite element approximation with discontinuous gradient pressure shape functions, Internat. J. Numer. Methods Fluids, 49, Dec., 1287-1304 (2005) · Zbl 1080.76036
[39] Saad, Y., A flexible inner-outer preconditioned gmres algorithm, SIAM J. Sci. Comput., 14, 2, 461-469 (1993) · Zbl 0780.65022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.