×

zbMATH — the first resource for mathematics

Spectral element simulations of interactive particles in a fluid. (English) Zbl 1442.76127
Summary: This paper presents three-dimensional simulations of interactive particles in a fluid. The originality of this paper is the integrated Eulerian-Lagrangian algorithms implemented with high-order methods in both space and time for numerical solutions to Navier-Stokes equations with additional source terms. Implementation of fourth order Stiffly Stable Schemes was tested for time integration before they were used in computations. In order to provide the \(hp\)-type mesh refinement, for extra flexibility to achieve higher spatial resolution, a modal spectral element method was used to solve governing equations in three dimensions. Another originality is the efficiency in handling moving particles without adaptive or moving mesh. Simulation results were validated with experimental data and verified with exact solutions. In addition, numerical results were also compared with solutions at higher resolutions and good agreement was accomplished. Results indicate that algorithms and implementations are accurate and appropriate for investigating three dimensional interactive particles in a fluid involving many moving objects.
MSC:
76T20 Suspensions
76D05 Navier-Stokes equations for incompressible viscous fluids
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
Software:
Peano
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hu, H.; Patankar, N.; Zhu, M., Direct numerical simulations of fluid-solid systems using arbitrary lagrangian-eulerian technique, J. Comput. Phys., 169, 427-462 (2001) · Zbl 1047.76571
[2] Hu, H.; Patankar, N.; Zhu, M., Direct simulation of flows of solid-liquid mixtures, Int. J. Multiph. Flow., 22, 335-352 (1996) · Zbl 1135.76442
[3] Johnson, A.; Tezduyar, T., 3D simulation of fluid-particle interactions with the number of particles reaching 100, Comput. Methods Appl. Mech. Engrg., 145, 301-321 (1997) · Zbl 0893.76043
[4] Mukundakrishnan, K.; Hu, H.; Ayyaswamy, P., The dynamics of two spherical particles in a confined rotating flow: pedalling motion, J. Fluid Mech., 599, 169-204 (2008) · Zbl 1151.76621
[5] Patankar, N.; Singh, P.; Joseph, D.; Glowinski, R.; Pan, T., A new formulation of the distributed lagrange multiplier/fictitious domain method for particulate flows, Int. J. Multiph. Flow., 26, 1509-1524 (2000) · Zbl 1137.76712
[6] Dong, S.; Liu, D.; Maxey, M.; Karniadakis, G., Spectral distributed lagrange multiplier method: algorithm and benchmark tests, J. Comput. Phys., 195, 695-717 (2004) · Zbl 1115.76349
[7] Glowinski, R.; Pan, T., A distributed lagrange multiplier/fictitious domain method for particulate flows, Int. J. Multiph. Flow., 25, 755-794 (1999) · Zbl 1137.76592
[8] Succi, S., The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (2001), Clarendon Press · Zbl 0990.76001
[9] Qian, Y.; D’Humières, D.; Lallemand, P., Lattice bgk models for navier-stokes equation, Europhys. Lett., 17, 6 (1992) · Zbl 1116.76419
[10] Rosis, A.; Ubertini, S.; Ubertini, F., A partitioned approach for two-dimensional fluid-structure interaction problems by a coupled lattice boltzmann-finite element method with immersed boundary, J. Fluids Struct., 45, 202-215 (2014)
[11] Ladd, A.; Verberg, R., Lattice-Boltzmann simulations of particle-fluid suspensions, J. Stat. Phys., 104, 1191-1251 (2001) · Zbl 1046.76037
[12] Neumann, P.; Bungartz, H.; Mehl, M.; Neckel, T.; Weinzierl, T., A coupled approach for fluid dynamic problems using the pde framework peano, Commun. Comput. Phys., 12, 1, 65-84 (2012) · Zbl 1373.76098
[13] Peskin, C., Flow patterns around heart valves: a numerical method, J. Comput. Phys., 10, 2, 252-271 (1972) · Zbl 0244.92002
[14] Peskin, C., The fluid dynamics of heart valves: experimental, theoretical and computational methods, Annu. Rev. Fluid Mech., 14, 235-259 (1981)
[15] Lai, M.; Peskin, C., An immersed boundary method with formal second-order accuracy and reduced numerical viscosity, J. Comput. Phys., 160, 2, 705-719 (2000) · Zbl 0954.76066
[16] Jung, E.; Peskin, C., Two-Dimensional simulations of valveless pumping using the immersed boundary method, SIAM J. Sci. Comput., 23, 1, 19-45 (2001) · Zbl 1065.76156
[17] Fogelson, A.; Keener, J., Immersed interface method for neumann and related problems in two and three dimensions, SIAM J. Sci. Comput., 22, 5, 1630-1654 (2000) · Zbl 0982.65112
[18] LeVeque, R.; Li, Z., Immersed interface methods for stokes flow with elastic boundaries or surface tension, SIAM J. Sci. Comput., 18, 3, 709-735 (1997) · Zbl 0879.76061
[19] Wiegmann, A.; Bube, K., The immersed interface method for nonlinear differential equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 35, 1, 177-200 (1998) · Zbl 0913.65076
[20] Xu, S.; Wang, Z., An immersed interface method for simulating the interaction of a fluid with moving boundaries, J. Comput. Phys., 216, 454-493 (2006) · Zbl 1220.76058
[21] Banerjee, P.; Butterfield, R., The Boundary Element Methods in Engineering Science (1981), McGraw-Hill · Zbl 0499.73070
[22] Annigeri, B.; Tseng, K., Boundary Element Methods in Engineering: Proceedings of the International Symposium on Boundary Element Methods: Advances in Solid and Fluid Mechanics (1989), Springer
[23] Hou, T.; Lowengrub, J.; Shelley, M., Boundary integral methods for multicomponent fluids and multiphase materials, J. Comput. Phys., 169, 302-362 (2001) · Zbl 1046.76029
[24] Baker, G.; Meiron, D.; Orszag, S., Boundary integral methods for axisymmetric and three-dimensional rayleigh-taylor instability problems, Physica D, 12, 19-31 (1984) · Zbl 0585.76063
[25] Degregoria, A.; Schwartz, L., A boundary integral method for two-phase displacement in hele-shaw cells, J. Fluid Mech., 164, 383-400 (1986) · Zbl 0587.76174
[26] McFadden, G.; Voorhees, P.; Boisvert, R.; Meiron, D., A boundary integral method for the simulation of two-dimensional particle coarsening, J. Sci. Comput., 1, 2, 117-144 (1986) · Zbl 0649.65066
[27] Unverdi, S.; Tryggvason, G., A front-tracking method for viscous, incompressible, multifluid flows, J. Comput. Phys., 100, 1, 25-37 (1992) · Zbl 0758.76047
[28] Tryggvason, G.; Bunner, B.; Esmaeeli, A.; Juric, D.; Al-Rawahi, N.; Tauber, W.; Han, J.; Nas, S.; Jan, Y.-J., A front-tracking method for the computations of multiphase flow, J. Comput. Phys., 169, 2, 708-759 (2001) · Zbl 1047.76574
[29] Bunner, B.; Tryggvason, G., Dynamics of homogeneous bubbly flows part 1 rise velocity and microstructure of the bubbles, J. Fluid Mech., 466, 17-52 (2002) · Zbl 1042.76058
[30] Liu, D.; Maxey, M.; Karniadakis, G., A fast method for particulate microflows, J. Microelectromech. Syst., 11, 691-702 (2002)
[31] Liu, D.; Maxey, M.; Karniadakis, G., Modeling and optimization of colloidal micro-pumps, J. Micromech. Microeng., 14, 567-575 (2004)
[32] Liu, D.; Maxey, M.; Karniadakis, G., Simulations of dynamic self-assembly of paramagnetic microspheres in confined microgeometries, J. Micromech. Microeng., 15, 2298-2308 (2005)
[33] Maxey, M.; Patel, B., Localized force representations for particles sedimenting in stokes flow, Int. J. Multiph. Flow., 27, 1603-1626 (2001) · Zbl 1137.76676
[34] Spijker, M., Stiffness in numerical initial-value problems, J. Comput. Appl. Math., 72, 393-406 (1996) · Zbl 0857.65074
[35] Park, K., An improved stiffly stable method for direct integration of nonlinear structural dynamic equations, J. Appl. Mech., 42, 2, 464-470 (1975) · Zbl 0342.65046
[36] Warburton, T.; Sherwin, S.; Karniadakis, G., Spectral basis functions for 2d hybrid hp elements, SIAM J. Sci. Comput., 20, 5, 1671-1695 (1999) · Zbl 0930.35016
[37] Karniadakis, G.; Sherwin, S., Spectral/hp Element Methods for Computational Fluid Dynamics (2005), Oxford University Press · Zbl 1116.76002
[38] Liu, D.; Chen, Q.; Wang, Y., Spectral element modeling of sediment transport in shear flows, Comput. Methods Appl. Mech. Engrg., 200, 1691-1707 (2011) · Zbl 1228.76102
[39] Liu, D.; Zheng, Y.; Chen, Q., Grain-resolved simulation of micro-particle dynamics in shear and oscillatory flows, Comput. & Fluids, 108, 129-141 (2015) · Zbl 1390.86019
[40] Liu, D.; Zheng, Y.; Chen, Q., Simulation of flow around rigid vegetation stems with a fast method of high accuracy, J. Fluids Struct., 63, 1-15 (2016)
[41] Liu, D.; Lvov, Y.; Dai, W., Joint simulations of confined diffusion inside nanotubules, J. Comput. Theor. Nanosci., 8, 2, 1-11 (2011)
[42] Liu, D.; Keaveny, E.; Maxey, M.; Karniadakis, G., Force-Coupling method for flows with ellipsoidal particles, J. Comput. Phys., 228, 3559-3581 (2009) · Zbl 1396.76068
[43] Liu, D.; Zheng, Y., Modal spectral element solutions to incompressible flows over particles of complex shape, J. Comput. Eng., 2014, 768538 (2014)
[44] Ambaye, H.; Manson, J., Calculations of accommodation coefficients for diatomic molecule gases, Phys. Rev. E, 73 (2006), 031202/1-11
[45] Gustafsson, B.; Kreiss, H.; Oliger, J., Time Dependent Problems and Difference Methods (1995), John Wiley & Sons, Inc · Zbl 0843.65061
[46] Deville, M.; Kleiser, L.; Montigny-Rannou, F., Pressure and time treatment for chebyshev spectral solution of a stokes problem, Internat. J. Numer. Methods Fluids, 4, 14, 1149-1163 (1984) · Zbl 0554.76033
[47] Patankar, S.; Baliga, B., A new finite difference scheme for parabolic differential equations, Numer. Heat Transfer, 1, 27 (1978)
[48] Canuto, C.; Hussaini, M.; Quarteroni, A.; Zang, T., Spectral Methods in Fluid Dynamics (1987), Springer-Verlag: Springer-Verlag New York/Berlin
[49] Gear, C., Numerical Initial Value Problems in Ordinary Differential Equations (1971), Prentice Hall: Prentice Hall NJ · Zbl 1145.65316
[50] Karniadakis, G.; Israeli, M.; Orszag, S., High-Order splitting methods for the incompressible navier-stokes equations, J. Comput. Phys., 97, 414-443 (1991) · Zbl 0738.76050
[51] Liu, D.; Zheng, Y.-L.; Moore, A.; Ferdows, M., Spectral element simulations of three dimensional convective heat transfer, Int. J. Heat Mass Transfer, 111, 1023-1038 (2017)
[52] Orszag, S.; Israeli, M.; Deville, M., Boundary conditions for incompressible flows, J. Sci. Comput., 1, 1, 75-111 (1986) · Zbl 0648.76023
[53] Duffy, M., Quadrature over a pyramid or cube of integrands with a singularity at a vertex, SIAM J. Numer. Anal., 19, 6, 1260-1262 (1982) · Zbl 0493.65011
[54] Babŭska, I.; Suri, M., The p and h-p versions of the finite element method, basic principles and properties, SIAM Rev., 36, 4, 578-632 (1994) · Zbl 0813.65118
[55] Oden, J., Optimal h-p finite element methods, Comput. Methods Appl. Mech. Engrg., 112, 1-4, 309-331 (1994) · Zbl 0842.65068
[56] Dubiner, M., Spectral methods on triangles and other domains, J. Sci. Comput., 6, 4, 345-390 (1991) · Zbl 0742.76059
[57] Fortes, A.; Joseph, D.; Lundgren, D., Nonlinear mechanics of fluidization of beds of spherical particles, J. Fluid Mech., 177, 483-497 (1987)
[58] Doostmohammadi, A.; Ardekani, A., Interaction between a pair of particles settling in a stratified fluid, Phys. Rev. E. Stat. Nonlin. Soft Matter Phys., 88, 2, 023029 (2013)
[59] Karniadakis, G.; II, R. K., Parallel Scientific Computing in C++ and MPI: A Seamless Approach To Parallel Algorithms and their Implementation (2003), Cambridge University Press · Zbl 1027.68023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.