zbMATH — the first resource for mathematics

Analysis of Lie symmetries with conservation laws and solutions for the generalized (3 + 1)-dimensional time fractional Camassa-Holm-Kadomtsev-Petviashvili equation. (English) Zbl 1442.35517
Summary: In this paper, under investigated is a generalized (3 + 1)-dimensional Camassa-Holm-Kadomtsev-Petviashvili (gCH-KP) equation, which describes the role of dispersion in the formation of patterns in liquid drops. With the help of the semi-inverse method, the Euler-Lagrange equation and Agrawal’s method, the time fractional gCH-KP equation is derived in the sense of Riemann-Liouville fractional derivatives. Further, the symmetry of the (3 + 1)-dimensional time fractional gCH-KP equation is studied by fractional order symmetry. Meanwhile, based on the new conservation theorem, the conservation laws of (3 + 1)-dimensional time fractional gCH-KP equation are constructed. Finally, the solutions to the equation are given via a bilinear method and the radial basis functions (RBFs) meshless approach.
35R11 Fractional partial differential equations
35A30 Geometric theory, characteristics, transformations in context of PDEs
35Q53 KdV equations (Korteweg-de Vries equations)
Full Text: DOI
[1] Camassa, R.; Holm, D. D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71, 1661-1664 (1993) · Zbl 0972.35521
[2] Liu, Z. R.; Qian, T. F., Peakons of the Camassa-Holm equation, Appl. Math. Model., 26, 473-480 (2002) · Zbl 1018.35061
[3] Tian, L. X.; Song, X. Y., New peaked solitary wave solutions of the generalized Camassa-Holm equation, Chaos Solitons Fractals, 19, 621-637 (2004) · Zbl 1068.35123
[4] Boyd, J. P., Peakons and coshoidal waves: traveling wave solutions of the Camassa-Holm equation, Appl. Math. Comput., 81, 173-187 (1997) · Zbl 0871.35089
[5] Wazwaz, A. M., A class of nonlinear fourth order variant of a generalized Camassa-Holm equation with compact and noncompact solutions, Appl. Math. Comput., 165, 485-501 (2005) · Zbl 1070.35044
[6] Wazwaz, A. M., New compact and noncompact solutions for two variants of a modified Camassa-Holm equation, Appl. Math. Comput., 163, 1165-1179 (2005) · Zbl 1072.35581
[7] Wazwaz, A. M., The Camassa-Holm-KP equations with compact and noncompact travelling wave solutions, Appl. Math. Comput., 170, 347-360 (2005) · Zbl 1078.35095
[8] Fu, L.; Chen, Y. D.; Yang, H. W., Time-space fractional coupled generalized Zakharov-Kuznetsov equations set for Rossby solitary waves in two-layer fluids, Mathematics, 7, 41 (2019)
[9] Zhang, R. G.; Yang, L. G.; Song, J.; Yang, H. L., (2+1) dimensional Rossby waves with complete Coriolis force and its solution by homotopy perturbation method, Comput. Math. Appl., 73, 1996-2003 (2017) · Zbl 1371.86021
[10] Guo, M.; Zhang, Y.; Wang, M.; Chen, Y. D.; Yang, H. W., A new ZK-ILW equation for algebraic gravity solitary waves in finite depth stratified atmosphere and the research of squall lines formation mechanism, Comput. Math. Appl., 75, 3589-3603 (2018)
[11] Guo, M.; Hong, H. Y.; Liu, J. X.; Yang, H. W., The time-fractional mZK equation for gravity solitary waves and solutions using sech-tanh and radial basis function method, Nonlinear Anal. Model. Control, 24, 1-19 (2019)
[12] Feng, B. L.; Zhang, Y. F.; Dong, H. H., A few integrable couplings of some integrable systems and (2+1)-dimensional integrable hierarchies, Abstr. Appl. Anal., 2014, 932672 (2014) · Zbl 07023340
[13] Dong, H. H.; Zhao, K.; Yang, H. W.; Li, Y. Q., Generalised (2+1)-dimensional super MKdV hierarchy for integrable systems in soliton theory, East Asian J. Appl. Math., 5, 256-272 (2015) · Zbl 06797000
[14] Shi, Y. L.; Yin, B. S.; Yang, H. W.; Yang, D. Z.; Xu, Z. H., Dissipative nonlinear schrödinger equation for envelope solitary rossby waves with dissipation effect in stratified fluids and its solution, Abstr. Appl. Anal., 2014, 643652 (2014) · Zbl 07022813
[15] Le, K. C.; Nguyen, L. T.K., Amplitude modulation of water waves governed by Boussinesq’s equation, Nonlinear Dynam., 81, 659-666 (2015) · Zbl 1347.76009
[16] Su, N. H.; Liu, F. W.; Anh, V., Tides as phase-modulated waves inducing periodic groundwater flow in coastal aquifers overlaying a sloping impervious base, Environ. Model. Software, 18, 937-942 (2003)
[17] Tao, M. S.; Zhang, N.; Gao, D. Z.; Yang, H. W., Symmetry analysis for three-dimensional dissipation Rossby waves, Adv. Difference Equ., 2018, 300 (2018) · Zbl 1448.37114
[18] Dong, H. H.; Chen, T. T.; Chen, L. F.; Zhang, Y., A new integrable symplectic map and the Lie point symmetry associated with nonlinear lattice equations, J. Nonlinear Sci. Appl., 9, 5107-5118 (2016) · Zbl 1405.35179
[19] Khalique, C. M.; Magalakwe, G., Combined sinh-cosh-Gordon equation: symmetry reductions, exact solutions and conservation laws, Quaest. Math., 37, 199-214 (2014) · Zbl 1397.35152
[20] Ma, W. X., Conservation laws by symmetries and adjoint symmetries, Discrete Contin. Dyn. Syst. Ser. S, 11, 707-721 (2017) · Zbl 1386.70041
[21] Ibragimov, N. H., A new conservation theorem, J. Math. Anal. Appl., 333, 311-328 (2007) · Zbl 1160.35008
[22] Fu, C.; Lu, C. N.; Yang, H. W., Time-space fractional (2+1) dimensional nonlinear Schrödinger equation for envelope gravity waves in baroclinic atmosphere and conservation laws as well as exact solutions, Adv. Difference Equ., 2018, 56 (2018) · Zbl 1445.35281
[23] Baleanu, D.; Inc, M.; Yusuf, A.; Aliyu, A. I., Lie symmetry analysis, exact solutions and conservation laws for the time fractional modified Zakharov-Kuznetsov equation, Nonlinear Anal. Model. Control, 22, 861-876 (2017)
[24] Singla, K.; Gupta, R. K., Space-time fractional nonlinear partial differential equations: symmetry analysis and conservation laws, Nonlinear Dynam., 89, 321-331 (2017) · Zbl 1374.35429
[25] Dong, H. H.; Zhang, Y. F.; Zhang, Y. F.; Yin, B. S., Generalized bilinear differential operators, binary Bell polynomials, and exact periodic wave solution of Boiti-Leon-Manna-Pempinelli equation, Abstr. Appl. Anal., 2014, 38609 (2014)
[26] Wang, Z., A numerical method for delayed fractional-order differential equations, J. Appl. Math., 2013, 256071 (2013) · Zbl 1266.65118
[27] Ma, W. X.; Yong, X. L.; Zhang, H. Q., Diversity of interaction solutions to the (2+1)-dimensional Ito equation, Comput. Math. Appl., 75, 289-295 (2018)
[28] Zhao, H. Q.; Ma, W. X., Mixed lump-kink solutions to the KP equation, Comput. Math. Appl., 74, 1399-1405 (2017) · Zbl 1394.35461
[29] Zhang, J. B.; Ma, W. X., Mixed lump-kink solutions to the BKP equation, Comput. Math. Appl., 74, 591-596 (2017) · Zbl 1387.35540
[30] Yang, J. Y.; Ma, W. X.; Qin, Z. Y., Lump and lump-soliton solutions to the (2+1)-dimensional Ito equation, Anal. Math. Phys., 8, 427-436 (2018) · Zbl 1403.35261
[31] Chen, S. T.; Ma, W. X., Lump solutions to a generalized Bogoyavlensky-Konopelchenko equation, Front. Math. China, 13, 525-534 (2018) · Zbl 1403.35259
[32] Ma, W. X., Lump and interaction solutions of linear PDEs in (3+1)-dimensions, East Asian J. Appl. Math., 9, 185-194 (2019)
[33] Hereman, W.; Zhuang, W., Symbolic computation of solitons with Macsyma, Comput. Appl. Math. II Differ. Equ., 287-296 (1992) · Zbl 0765.35048
[34] Wu, J. Z.; Xing, X. Z.; Geng, X. G., Generalized bilinear differential operators application in a (3+1)-dimensional generalized shallow water equation, Adv. Math. Phys., 2015, 291804 (2015) · Zbl 1342.35270
[35] Lü, X.; Ma, W. X., Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation, Nonlinear Dynam., 85, 1217-1222 (2016) · Zbl 1355.35159
[36] Dehghan, M.; Abbaszadeh, M.; Mohebbi, A., An implicit RBF meshless approach for solving the time fractional nonlinear sine-Gordon and Klein-Gordon equations, Eng. Anal. Bound. Elem., 50, 412-434 (2015) · Zbl 1403.65082
[37] He, J. H., Semi-inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbomachinery aerodynamics, Int. J. Turbo Jet Eng., 14, 23-28 (1997)
[38] Agrawal, O. P., Formulation of euler-lagrange equations for fractional variational problems, J. Math. Anal. Appl., 272, 368-379 (2002) · Zbl 1070.49013
[39] Agrawal, O. P., A general formulation and solution scheme for fractional optimal control problems, Nonlinear Dynam., 38, 323-337 (2004) · Zbl 1121.70019
[40] Zhao, B. J.; Wang, R. Y.; Sun, W. J.; Yang, H. W., Combined ZK-mZK equation for Rossby solitary waves with complete Coriolis force and its conservation laws as well as exact solutions, Adv. Difference Equ., 2018, 42 (2018) · Zbl 1445.35280
[41] Lu, C. N.; Fu, C.; Yang, H. W., Time-fractional generalized Boussinesq equation for Rossby solitary waves with dissipation effect in stratified fluid and conservation laws as well as exact solutions, Appl. Math. Comput., 327, 104-116 (2018)
[42] Rui, W. J.; Zhang, X. Z., Lie symmetries and conservation laws for the time fractional Derrida-Lebowitz-Speer-Spohn equation, Commun. Nonlinear Sci. Numer. Simul., 34, 38-44 (2016)
[43] Alquran, M.; Jaradat, H.; Al-Shara, S.; Awawdeh, F., A new simplified bilinear method for the N-soliton solutions for a generalized FmKdV equation with time-dependent variable coefficients, Int. J. Nonlinear Sci. Numer. Simul., 16, 259-269 (2015) · Zbl 1401.35263
[44] Gupta, A. K.; Ray, S. S., On the solitary wave solution of fractional Kudryashov-Sinelshchikov equation describing nonlinear wave processes in a liquid containing gas bubbles, Appl. Math. Comput., 298, 1-12 (2017) · Zbl 1411.35271
[45] Mohebbi, A.; Abbaszadeh, M.; Dehghan, M., Solution of two-dimensional modified anomalous fractional sub-diffusion equation via radial basis functions (RBF) meshless method, Eng. Anal. Bound. Elem., 38, 72-82 (2014) · Zbl 1287.65089
[46] Jumarie, G., Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions, Appl. Math. Lett., 22, 378-385 (2009) · Zbl 1171.26305
[47] Gazizov, R.; Kasatkin, A.; Lukashchuk, S. Y., Continuous transformation groups of fractional differential equations, Vestnik Usatu, 9, 21 (2007)
[48] Podlubny, I., Fractional Differential Equations (1998), Academic Press: Academic Press San Diego · Zbl 0922.45001
[49] Wang, G. W.; Liu, X. Q.; Zhang, Y. Y., Lie symmetry analysis to the time fractional generalized fifth-order KdV equation, Commun. Nonlinear Sci. Numer. Simul., 18, 2321-2326 (2013) · Zbl 1304.35624
[50] Ibragimov, N. H., Nonlinear self-adjointness and conservation laws, J. Phys. A, 44, 432002 (2011) · Zbl 1270.35031
[51] Jumarie, G., Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results, Comput. Math. Appl., 51, 1367-1376 (2006) · Zbl 1137.65001
[52] Sahoo, S.; Ray, S. S., Analysis of Lie symmetries with conservation laws for the (3+1) dimensional time-fractional mKdV-ZK equation in ion-acoustic waves, Nonlinear Dynam., 90, 1105-1113 (2017) · Zbl 1390.37115
[53] Hereman, W.; Zhuang, W., A macsyma program for the Hirota method, (13th World Congress on Computation and Applied Mathematics, Vol. 2 (1991)), 842-863
[54] Jaradat, H. M.; Alshara, S.; Jaradat, M. M.M.; Mustafa, Z.; Alsayyed, O.; Alquran, M.; Abohassan, K. M.; Momani, S., New solitary wave and multiple soliton solutions for the time-space coupled fractional mKdV system with time-dependent coefficients, J. Comput. Theoret. Nanosci., 13, 9082-9089 (2016)
[55] Zhang, X. E.; Chen, Y.; Zhang, Y., Breather, lump and X soliton solutions to nonlocal KP equation, Comput. Math. Appl., 74, 2341-2347 (2017) · Zbl 1398.35210
[56] Ma, W. X., Comment on the 3+1 dimensional Kadomtsev-Petviashvili equations, Commun. Nonlinear Sci. Numer. Simul., 16, 2663-2666 (2011) · Zbl 1221.35353
[57] Ma, W. X.; Zhou, Y., Lump solutions to nonlinear partial differential equations via Hirota bilinear forms, J. Differential Equations, 264, 2633-2659 (2018) · Zbl 1387.35532
[58] Jaradat, H. M.; Alshara, S.; Awawdeh, F.; Alquran, M., Variable coefficient equations of the Kadomtsev-Petviashvili hierarchy: multiple soliton solutions and singular multiple soliton solutions, Phys. Scr., 85, 035001 (2012) · Zbl 1277.35303
[59] Veksler, A.; Zarmi, Y., Wave interactions and the analysis of the perturbed burgers equation, Physica D, 211, 57-73 (2005) · Zbl 1084.35078
[60] Zhuang, P. H.; Liu, Q. X., Numerical method of Rayleigh-Stokes problem for heated generalized second grade fluid with fractional derivative, Appl. Math. Mech. Engl. Ed., 30, 1533-1546 (2009) · Zbl 1353.76055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.