zbMATH — the first resource for mathematics

Lattice Boltzmann simulations on irregular grids: introduction of the NATriuM library. (English) Zbl 1443.76177
Summary: The lattice Boltzmann method is a modern approach to simulate fluid flow. In its original formulation, it is restricted to regular grids, second-order discretizations, and a unity CFL number. This paper describes our new off-lattice Boltzmann solver NATriuM, an extensible and parallel C++ code to perform lattice Boltzmann simulations on irregular grids. NATriuM also allows high-order spatial discretizations and non-unity CFL numbers to be used. We demonstrate how these features can efficiently decrease the number of grid points required in a simulation and thus reduce the computational time, compared to the standard lattice Boltzmann method. We detail the implementation of a recently proposed semi-Lagrangian lattice Boltzmann method and prove its efficiency in comparisons to other state-of-the-art off-lattice Boltzmann schemes.
76M28 Particle methods and lattice-gas methods
65Z05 Applications to the sciences
Full Text: DOI
[1] Higuera, F. J.; Jiménez, J., Boltzmann approach to lattice gas simulations, Europhys. Lett., 9, 663-668 (1989)
[2] McNamara, G.; Zanetti, G., Use of the Boltzmann equation to simulate lattice-gas automata, Phys. Rev. Lett., 61, 2332-2335 (1988)
[3] Martys, N. S.; Chen, H., Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method, Phys. Rev. E, 53, 743-750 (1996)
[4] Li, Q.; Luo, K. H.; Kang, Q. J.; He, Y. L.; Chen, Q.; Liu, Q., Lattice Boltzmann methods for multiphase flow and phase-change heat transfer, Prog. Energy Combust. Sci., 52, 62-105 (2016)
[5] L. Jahanshaloo, E. Pouryazdanpanah, N.A. Che Sidik, N.A.C. Sidik, A Review on the Application of the Lattice Boltzmann Method for Turbulent Flow Simulation, 64 (2013) 37-41. http://dx.doi.org/10.1080/10407782.2013.807690.
[6] Filippova, O.; Hänel, D., Grid refinement for lattice-BGK models, J. Comput. Phys., 147, 219-228 (1998) · Zbl 0917.76061
[7] He, X.; Luo, L.-S.; Dembo, M., Some progress in lattice boltzmann method. Part I. Nonuniform mesh grids, J. Comput. Phys., 129, 357-363 (1996) · Zbl 0868.76068
[8] Han, S.-L.; Zhu, P.; Lin, Z.-Q., Two-dimensional interpolation-supplemented and Taylor-series expansion-based lattice Boltzmann method and its application, Commun. Nonlinear Sci. Numer. Simul., 12, 1162-1171 (2007) · Zbl 1142.76044
[9] QU, K. U.N.; Shu, C.; CHEW, Y. T., an isoparametric transformation-based interpolation-supplemented lattice boltzmann method and its application, Mod. Phys. Lett. B, 24, 1315-1318 (2010) · Zbl 1195.76331
[10] Krämer, A.; Küllmer, K.; Reith, D.; Joppich, W.; Foysi, H., Semi-Lagrangian off-lattice Boltzmann method for weakly compressible flows, Phys. Rev. E, 95 (2017)
[11] Fakhari, A.; Lee, T., Numerics of the lattice boltzmann method on nonuniform grids, Comput. & Fluids, 107, 205-213 (2015) · Zbl 1390.76710
[12] Hejranfar, K.; Ezzatneshan, E., Implementation of a high-order compact finite-difference lattice Boltzmann method in generalized curvilinear coordinates, J. Comput. Phys., 267, 28-49 (2014) · Zbl 1349.76475
[13] Patil, D. V.; Lakshmisha, K. N., Finite volume TVD formulation of lattice Boltzmann simulation on unstructured mesh, J. Comput. Phys., 228, 5262-5279 (2009) · Zbl 1280.76054
[14] Ubertini, S.; Succi, S.; Stefano Ubertini, S. S.; Ubertini, S.; Succi, S., A generalised lattice boltzmann equation on unstructured grids 1 introduction, Physics, 3, 342-356 (2008)
[15] Düster, A.; Demkowicz, L.; Rank, E., High-order finite elements applied to the discrete Boltzmann equation, Internat. J. Numer. Methods Engrg., 67, 1094-1121 (2006) · Zbl 1113.76049
[16] Li, Y.; LeBoeuf, E. J.; Basu, P. K., Use of a least squares finite element lattice boltzmann method to study fluid flow and mass transfer processes, (Sunderam, V. S.; van Albada, G. D.; Sloot, P. M.A.; Dongarra, J. J., Computational Science - ICCS 2005.5th International Conference, Atlanta, GA, USA, May 22 - 25, 2005; Proceedings. Computational Science - ICCS 2005.5th International Conference, Atlanta, GA, USA, May 22 - 25, 2005; Proceedings, Lecture Notes in Computer Science TS - CrossRef, vol. 3514 (2005), Springer: Springer Berlin), 172-179 · Zbl 1129.76330
[17] Zadehgol, A.; Ashrafizaadeh, M.; Musavi, S. H., A nodal discontinuous Galerkin lattice Boltzmann method for fluid flow problems, Comput. & Fluids, 105, 58-65 (2014) · Zbl 1391.76646
[18] Min, M.; Lee, T., A spectral-element discontinuous Galerkin lattice Boltzmann method for nearly incompressible flows, J. Comput. Phys., 230, 245-259 (2011) · Zbl 1427.76189
[19] Nannelli, F.; Succi, S., The lattice Boltzmann equation on irregular lattices, J. Stat. Phys., 68, 401-407 (1992) · Zbl 0925.82036
[20] He, X.; Doolen, G. D., Lattice Boltzmann method on a curvilinear coordinate system, Phys. Rev. E, 56, 434-440 (1997)
[21] He, X., Error analysis for the interpolation-supplemented lattice-boltzmann equation scheme, Internat. J. Modern Phys. C, 08, 737-745 (1997)
[22] Lee, T.; Lin, C.-L., A characteristic galerkin method for discrete boltzmann equation, J. Comput. Phys., 171, 336-356 (2001) · Zbl 1017.76043
[23] Hejranfar, K.; Hajihassanpour, M., Chebyshev collocation spectral lattice Boltzmann method in generalized curvilinear coordinates, Comput. & Fluids, 146, 154-173 (2017) · Zbl 1390.76719
[24] Li, Y.; LeBoeuf, E. J.; Basu, P. K., Least-squares finite-element lattice Boltzmann method, Phys. Rev. E: Stat. Nonlinear Soft Matter Phys., 69, 65701 (2004)
[25] Hejranfar, K.; Hajihassanpour, M., Chebyshev collocation spectral lattice Boltzmann method for simulation of low-speed flows, Phys. Rev. E: Stat. Nonlinear Soft Matter Phys., 91, 13301 (2015)
[26] Lee, T.; Lin, C.-L. L., An Eulerian description of the streaming process in the lattice Boltzmann equation, J. Comput. Phys., 185, 445-471 (2003) · Zbl 1047.76106
[27] Kataoka, T.; TSUTAHARA, M., Lattice Boltzmann model for the compressible Navier-Stokes equations with flexible specific-heat ratio, Phys. Rev. E: Stat. Nonlinear Soft Matter Phys., 69, 35701 (2004)
[28] Xu, A., Two-dimensional finite-difference lattice Boltzmann method for the complete Navier-Stokes equations of binary fluids, Europhys. Lett., 69, 7 (2004)
[29] Yan-Biao, G.; Ai-Guo, X.; Guang-Cai, Z.; Ping, Z.; Lei, Z.; Ying-Jun, L., Finite-difference lattice boltzmann scheme for high-speed compressible flow: Two-dimensional case, Commun. Theor. Phys., 50, 201 (2008) · Zbl 1392.76061
[30] Hiraishi, M.; Tsutahara, M.; Leung, R. C.K., Numerical simulation of sound generation in a mixing layer by the finite difference lattice Boltzmann method, Comput. Math. Appl., 59, 2403-2410 (2010) · Zbl 1193.76110
[31] Tsutahara, M., The finite-difference lattice Boltzmann method and its application in computational aero-acoustics, Fluid Dyn. Res., 44, 045507 (2012) · Zbl 1309.76171
[32] Guo, Z.; Wang, R.; Xu, K., Discrete unified gas kinetic scheme for all Knudsen number flows. II. Thermal compressible case, Phys. Rev. E: Stat. Nonlinear Soft Matter Phys., 91, 33313 (2015)
[33] Hejranfar, K.; Ghaffarian, A., A spectral difference lattice Boltzmann method for solution of inviscid compressible flows on structured grids, Comput. Math. Appl., 72, 1341-1368 (2016) · Zbl 1357.76056
[34] Guo, Z.; Xu, K.; Wang, R., Discrete unified gas kinetic scheme for all Knudsen number flows: low-speed isothermal case, Phys. Rev. E: Stat. Nonlinear Soft Matter Phys., 88, 33305 (2013)
[35] Hesthaven, J. S.; Warburton, T., (Nodal Discontinuous Galerkin Methods. Nodal Discontinuous Galerkin Methods, TS - C, vol. 54 (2008), Springer: Springer New York) · Zbl 1134.65068
[36] Li, Y.; LeBoeuf, E. J.; Basu, P. K., Least-squares finite-element scheme for the lattice Boltzmann method on an unstructured mesh, Phys. Rev. E: Stat. Nonlinear Soft Matter Phys., 72 (2005)
[37] Uga, K. C.; Min, M.; Lee, T.; Fischer, P. F., Spectral-element discontinuous Galerkin lattice Boltzmann simulation of flow past two cylinders in tandem with an exponential time integrator, Comput. Math. Appl., 65, 239-251 (2013) · Zbl 1268.76049
[38] Lallemand, P.; Luo, L.-S., Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys. Rev. E, 61, 6546-6562 (2000)
[39] Cheng, M.; Hung, K. C., Lattice boltzmann method on nonuniform mesh, Int. J. Comput. Eng. Sci., 5, 291-302 (2004)
[40] Shu, C.; Chew, Y. T.; Niu, X. D., Least-squares-based lattice Boltzmann method: a meshless approach for simulation of flows with complex geometry, Phys. Rev. E: Stat. Nonlinear Soft Matter Phys., 64, 45701 (2001)
[41] Shu, C.; Niu, X. D.; Chew, Y. T., Taylor-series expansion and least-squares-based lattice Boltzmann method: Two-dimensional formulation and its applications, Phys. Rev. E, 65, 36708 (2002)
[42] Mirzaei, M.; Poozesh, A., Simulation of fluid flow in a body-fitted grid system using the lattice Boltzmann method, Phys. Rev. E, 87, 63312 (2013)
[43] Falcone, M.; Ferretti, R., Semi-Lagrangian Approximation Schemes for Linear and Hamilton—Jacobi Equations (2013), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia, PA · Zbl 1007.65060
[44] Li, W.; Luo, L.-S., An implicit block LU-SGS finite-volume lattice-Boltzmann scheme for steady flows on arbitrary unstructured meshes, J. Comput. Phys., 327, 503-518 (2016) · Zbl 1373.76255
[45] Kim, J.; Moin, P.; Moser, R., Turbulence statistics in fully developed channel flow at low Reynolds number, J. Fluid Mech., 177, 133 (1987) · Zbl 0616.76071
[46] Wang, Z. J.; Fidkowski, K.; Abgrall, R.; Bassi, F.; Caraeni, D.; Cary, A.; Deconinck, H.; Hartmann, R.; Hillewaert, K.; Huynh, H. T.; Kroll, N.; May, G.; Persson, P.-O.; van Leer, B.; Visbal, M., High-order CFD methods: current status and perspective, Internat. J. Numer. Methods Fluids, 72, 811-845 (2013)
[47] Di Ilio, G.; Chiappini, D.; Ubertini, S.; Bella, G.; Succi, S., Hybrid lattice Boltzmann method on overlapping grids, Phys. Rev. E, 95, 13309 (2017)
[48] Bangerth, W.; Hartmann, R.; Kanschat, G., deal.II—A general-purpose object-oriented finite element library, ACM Trans. Math. Software, 33 (2007), 24-es · Zbl 1365.65248
[49] Heroux, M. A.; Phipps, E. T.; Salinger, A. G.; Thornquist, H. K.; Tuminaro, R. S.; Willenbring, J. M.; Williams, A.; Stanley, K. S.; Bartlett, R. A.; Howle, V. E.; Hoekstra, R. J.; Hu, J. J.; Kolda, T. G.; Lehoucq, R. B.; Long, K. R.; Pawlowski, R. P., An overview of the Trilinos project, ACM Trans. Math. Software, 31, 397-423 (2005) · Zbl 1136.65354
[50] Burstedde, C.; Wilcox, L. C.; Ghattas, O., p4est, SIAM J. Sci. Comput., 33, 1103-1133 (2011) · Zbl 1230.65106
[51] Bardow, A.; Karlin, I. V.; Gusev, A. A., General characteristic-based algorithm for off-lattice Boltzmann simulations, Europhys. Lett., 75, 434-440 (2006)
[52] Karlin, I. V.; Succi, S.; Orszag, S., Lattice boltzmann method for irregular grids, Phys. Rev. Lett., 82, 5245-5248 (1999)
[53] Bhatnagar, P. L.; Gross, E. P.; Krook, M., A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94, 511-525 (1954) · Zbl 0055.23609
[54] Bangerth, W.; Burstedde, C.; Heister, T.; Kronbichler, M., Algorithms and data structures for massively parallel generic adaptive finite element codes, ACM Trans. Math. Software, 38, 1-28 (2011) · Zbl 1365.65247
[55] Guo, Z.; Zhao, T. S.; Shi, Y., Preconditioned lattice-Boltzmann method for steady flows, Phys. Rev. E: Stat. Nonlinear Soft Matter Phys., 70, 66706 (2004)
[56] Dellar, P. J., Incompressible limits of lattice Boltzmann equations using multiple relaxation times, J. Comput. Phys., 190, 351-370 (2003) · Zbl 1076.76063
[57] Böh, F.; Chikatamarla, S. S.; Karlin, I., Entropic multi-relaxation models for simulation of fluid turbulence, ESAIM: Proc. Surv., 52, 1-24 (2015) · Zbl 1381.76278
[58] Latt, J.; Chopard, B., Lattice Boltzmann method with regularized pre-collision distribution functions, Math. Comput. Simulation, 72, 165-168 (2006) · Zbl 1102.76056
[59] Krämer, A., Lattice-Boltzmann-Methoden zur Simulation Inkompressibler Wirbelströmungen (2017), University of Siegen, (Ph.D. thesis)
[60] Wilde, D.; Krämer, A.; Küllmer, K.; Foysi, H.; Reith, D., Multistep lattice boltzmann methods: Theory and applications, Internat. J. Numer. Methods Fluids (2018), (submitted for publication)
[61] Holdych, D. J.; Noble, D. R.; Georgiadis, J. G.; Buckius, R. O., Truncation error analysis of lattice Boltzmann methods, J. Comput. Phys., 193, 595-619 (2004) · Zbl 1040.76052
[62] Junk, M.; Klar, A.; Luo, L.-S., Asymptotic analysis of the lattice Boltzmann equation, J. Comput. Phys., 210, 676-704 (2005) · Zbl 1079.82013
[63] Bo, Y.; Wang, P.; Guo, Z.; Wang, L.-P., DUGKS simulations of three-dimensional Taylor-Green vortex flow and turbulent channel flow, Comput. & Fluids (2017) · Zbl 1410.76339
[64] Letalleur, N.; Plouraboué, F.; Prat, M., Average flow model of rough surface lubrication, J. Tribol., 124, 539 (2002)
[65] Al-Zoubi, A.; Brenner, G., Simulating fluid flow over sinusoidal surfaces using the lattice Boltzmann method, Comput. Math. Appl., 55, 1365-1376 (2008) · Zbl 1142.76447
[66] Latt, J.; Chopard, B.; Malaspinas, O.; Deville, M.; Michler, A., Straight velocity boundaries in the lattice Boltzmann method, Phys. Rev. E, 77, 56703 (2008)
[67] Bouzidi, M.; Firdaouss, M.; Lallemand, P., Momentum transfer of a Boltzmann-lattice fluid with boundaries, Phys. Fluids, 13, 3452-3459 (2001) · Zbl 1184.76068
[68] Moser, R. D.; Kim, J.; Mansour, N. N., Direct numerical simulation of turbulent channel flow up to Ret=590, Phys. Fluids, 11, 943-945 (1999) · Zbl 1147.76463
[69] T. Tsukahara, Y. Seki, H. Kawamura, D. Tochio, DNS of turbulent channel flow at very low Reynolds numbers, arXiv:1406.0248 [physics.flu-dyn] 00 (2014) 18.
[70] Chikatamarla, S. S.; Karlin, I. V., Entropic lattice Boltzmann method for turbulent flow simulations, Physica A, 392, 1925-1930 (2013)
[71] Karlin, I. V.; Bosch, F.; Chikatamarla, S. S., Gibbs’ principle for the lattice-kinetic theory of fluid dynamics, Phys. Rev. E: Stat. Nonlinear Soft Matter Phys., 90, 31302 (2014)
[72] X. He, X. Shan, G.D. Doolen, Discrete Boltzmann equation model for nonideal gases, 1997.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.