zbMATH — the first resource for mathematics

The vicinity of the Earth-Moon \(L_1\) point in the bicircular problem. (English) Zbl 1443.70040
Summary: The bicircular model is a periodic time-dependent perturbation of the Earth-Moon restricted three-body problem that includes the direct gravitational effect of the Sun on the infinitesimal particle. In this paper, we focus on the dynamics in the neighbourhood of the \(L_1\) point of the Earth-Moon system. By means of a periodic time-dependent reduction to the centre manifold, we show the existence of two families of quasi-periodic Lyapunov orbits, one planar and one vertical. The planar Lyapunov family undergoes a (quasi-periodic) pitchfork bifurcation giving rise to two families of quasi-periodic halo orbits. Between them, there is a family of Lissajous quasi-periodic orbits, with three basic frequencies.
70F07 Three-body problems
70K60 General perturbation schemes for nonlinear problems in mechanics
37B25 Stability of topological dynamical systems
37G05 Normal forms for dynamical systems
FFTW; MPFR; Taylor
Full Text: DOI
[1] Andreu, M.A.: The quasi-bicircular problem. Ph.D. thesis, Univ. Barcelona (1998)
[2] Andreu, MA, Dynamics in the center manifold around \(L_2\) in the quasi-bicircular problem, Celest. Mech., 84, 2, 105-133 (2002) · Zbl 1027.70016
[3] Andreu, M.A., Simó, C.: The quasi-bicircular problem for the Earth-Moon-Sun parameters. Preprint (2000)
[4] Bihan, BL; Masdemont, JJ; Gómez, G.; Lizy-Destrez, S., Invariant manifolds of a non-autonomous quasi-bicircular problem computed via the parameterization method, Nonlinearity, 30, 8, 3040 (2017) · Zbl 1400.70028
[5] Boudad, K., Howell, K., Davis, D.: Near rectilinear Halo orbits in cislunar space within the context of the Bicircular Four-Body Problem. IAA-AAS-SciTech-039 (2019)
[6] Breakwell, JV; Brown, JV, The ‘Halo’ family of 3-dimensional periodic orbits in the Earth-Moon restricted 3-body problem, Celest. Mech., 20, 4, 389-404 (1979) · Zbl 0415.70020
[7] Castellà, E.; Jorba, À., On the vertical families of two-dimensional tori near the triangular points of the Bicircular problem, Celest. Mech., 76, 1, 35-54 (2000) · Zbl 0977.70009
[8] Celletti, A.; Pucacco, G.; Stella, D., Lissajous and halo orbits in the restricted three-body problem, J. Nonlinear Sci., 25, 2, 343-370 (2015) · Zbl 1344.70022
[9] Cronin, J.; Richards, PB; Russell, LH, Some periodic solutions of a four-body problem, Icarus, 3, 423-428 (1964)
[10] Farrés, A.; Jorba, À., On the high order approximation of the centre manifold for ODEs, Discrete Contin. Dyn. Syst. Ser. B, 14, 3, 977-1000 (2010) · Zbl 1213.37119
[11] Fousse, L.; Hanrot, G.; Lefèvre, V.; Pélissier, P.; Zimmermann, P., MPFR: a multiple-precision binary floating-point library with correct rounding, ACM Trans. Math. Softw., 33, 2, 13 (2007) · Zbl 1365.65302
[12] Frigo, M.; Johnson, SG, The design and implementation of FFTW3, Proc. IEEE, 93, 216-231 (2005)
[13] Gabern, F.; Jorba, À., A restricted four-body model for the dynamics near the Lagrangian points of the Sun-Jupiter system, Discrete Contin. Dyn. Syst. Ser. B, 1, 2, 143-182 (2001) · Zbl 0996.70009
[14] Gabern, F.; Jorba, À., Effective computation of the dynamics around a two-dimensional torus of a Hamiltonian system, J. Nonlinear Sci., 15, 3, 159-182 (2005) · Zbl 1081.37034
[15] Gabern, F.; Jorba, À.; Locatelli, U., On the construction of the Kolmogorov normal form for the Trojan asteroids, Nonlinearity, 18, 4, 1705-1734 (2005) · Zbl 1078.70013
[16] Giorgilli, A.; Galgani, L., Formal integrals for an autonomous Hamiltonian system near an equilibrium point, Celest. Mech., 17, 267-280 (1978) · Zbl 0387.70022
[17] Giorgilli, A.; Galgani, L., Rigorous estimates for the series expansions of Hamiltonian perturbation theory, Celest. Mech., 37, 95-112 (1985)
[18] Giorgilli, A.; Delshams, A.; Fontich, E.; Galgani, L.; Simó, C., Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem, J. Differ. Equ., 77, 167-198 (1989) · Zbl 0675.70027
[19] Gómez, G., Jorba, À., Masdemont, J., Simó, C.: Study refinement of semi-analytical Halo orbit theory. ESOC contract 8625/89/D/MD(SC), final report, European Space Agency, 1991. Reprinted as Dynamics and mission design near libration points. Vol. III, Advanced Methods for Collinear Points, Volume 4 of World Scientific Monograph Series in Mathematics (2001a)
[20] Gómez, G., Jorba, À., Masdemont, J., Simó, C.: Study of Poincaré maps for orbits near Lagrangian points. ESOC contract 9711/91/D/IM(SC), final report, European Space Agency, 1993. Reprinted as Dynamics and Mission Design Near Libration Points. Vol. IV, Advanced Methods for Triangular Points, Volume 5 of World Scientific Monograph Series in Mathematics (2001b) · Zbl 0969.70002
[21] Holoborodko, P.: MPFR C++. http://www.holoborodko.com/pavel/mpfr/ (2008-2018)
[22] Huang, S.S.: Very restricted four-body problem. Technical note TN D-501, Goddard Space Flight Center, NASA (1960)
[23] Jorba, À., A methodology for the numerical computation of normal forms, centre manifolds and first integrals of Hamiltonian systems, Exp. Math., 8, 2, 155-195 (1999) · Zbl 0983.37107
[24] Jorba, À., A numerical study on the existence of stable motions near the triangular points of the real Earth-Moon system, Astron. Astrophys., 364, 1, 327-338 (2000)
[25] Jorba, À.; Masdemont, J., Dynamics in the centre manifold of the collinear points of the Restricted Three Body Problem, Physica D, 132, 189-213 (1999) · Zbl 0942.70012
[26] Jorba, À., Simó, C.: Effective stability for periodically perturbed Hamiltonian systems. In Seimenis, J. (ed.) Hamiltonian Mechanics: Integrability and Chaotic Behaviour, volume 331 of NATO Adv. Sci. Inst. Ser. B Phys., pp. 245-252. Held in Toruń, Polland, 28 June-2 July 1993. Plenum, New York (1994)
[27] Jorba, À.; Villanueva, J., On the persistence of lower dimensional invariant tori under quasi-periodic perturbations, J. Nonlinear Sci., 7, 427-473 (1997) · Zbl 0898.58044
[28] Jorba, À.; Zou, M., A software package for the numerical integration of ODEs by means of high-order Taylor methods, Exp. Math., 14, 1, 99-117 (2005) · Zbl 1108.65072
[29] Richardson, DL, A note on a Lagrangian formulation for motion about the collinear points, Celest. Mech., 22, 3, 231-236 (1980) · Zbl 0443.70009
[30] Simó, C., Estabilitat de sistemes Hamiltonians, Mem. Real Acad. Cienc. Artes Barcelona, 48, 7, 303-348 (1989)
[31] Simó, C.: Effective computations in Hamiltonian dynamics. In: Mécanique céleste, volume 1996 of SMF Journ. Annu., p. 23. Soc. Math. France, Paris (1996) · Zbl 0965.70007
[32] Simó, C.; Rumyantsev, VV; Karapetyan, AV, Effective computations in celestial mechanics and astrodynamics, Modern Methods of Analytical Mechanics and their Applications, volume 387 of CISM Courses and Lectures (1998), Berlin: Springer, Berlin · Zbl 0920.70003
[33] Simó, C.; Gómez, G.; Jorba, À.; Masdemont, J.; Roy, AE; Steves, BA, The Bicircular model near the triangular libration points of the RTBP, From Newton to Chaos, 343-370 (1995), New York: Plenum Press, New York · Zbl 0883.70008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.