×

zbMATH — the first resource for mathematics

Poisson twister generator by cumulative frequency technology. (English) Zbl 07257180
Summary: The widely known generators of Poisson random variables are associated with different modifications of the algorithm based on the convergence in probability of a sequence of uniform random variables to the created stochastic number. However, in some situations, this approach yields different discrete Poisson probability distributions and skipping in the generated numbers. This article offers a new approach for creating Poisson random variables based on the complete twister generator of uniform random variables, using cumulative frequency technology. The simulation results confirm that probabilistic and frequency distributions of the obtained stochastic numbers completely coincide with the theoretical Poisson distribution. Moreover, combining this new approach with the tuning algorithm of basic twister generation allows for a significant increase in length of the created sequences without using additional RAM of the computer.
MSC:
62 Statistics
65 Numerical analysis
Software:
5tbl; Diehard
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Feller, W.; ; An Introduction to Probability Theory and Its Applications: Hoboken, NJ, USA 2008; . · Zbl 0158.34902
[2] Gnedenko, B.; ; Theory of Probability: Boca Raton, FL, USA 1998; ,520.
[3] Zhang, H.; Li, B.; Characterizations of discrete compound poisson distribution; Commun. Stat.-Theory Method.: 2016; Volume 45 ,6789-6802. · Zbl 1380.62054
[4] Guerriero, V.; Power low distribution: method of multi-scale inferential statistics; J. Mod. Math. Front.: 2012; Volume 1 ,21-28.
[5] Arkani, M.; Khalafi, H.; Vosoughi, N.; A flexible multichannel digital random pulse generator based on FPGA; J. Nucl. Sci. Tech.: 2013; Volume 3 ,109-116.
[6] Rasoanaivo, A.N.; Horowitz, W.A.; Medium-induced radiation beyond the Poisson approximation; J. Phys. Conf.: 2017; Volume 878 .
[7] Veiga, A.; Spinelli, E.; A pulse generator with Poisson-exponential distribution for emulation of radioactive decay events; Proceedings of the IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS): ; ,31-34.
[8] Kirkpatrick, J.M.; Young, B.M.; Poisson statistical methods for the analysis of low-count gamma spectra; IEEE Trans. Nucl. Sci.: 2009; Volume 56 ,1278-1282.
[9] Marsaglia, G.; Tsang, W.W.; Wang, J.; Fast generation of discrete random variables; J. Stat. Software: 2004; Volume 11 ,1-11.
[10] Kumari, S.; Valarmathi, M.; Prince, S.; Generation of pseudorandom binary sequence using shot noise for optical encryption; Proceedings of the International Conference on Communication and Signal Processing (ICCSP): ; ,0119-0122.
[11] Hosamo, M.; A Study of the Source Traffic Generator Using Poisson Distribution for ABR Service; Model. Simul. Eng.: 2012; Volume 2012 ,1-6.
[12] Zhang, H.; Liu, Y.; Li, B.; Notes on discrete compound poisson model with applications to risk theory; Insur. Math. Econ.: 2014; Volume 59 ,325-336. · Zbl 1306.60050
[13] Shanmugam, R.; Informatics about fear to report rapes using bumped-up poisson model; Am. J. Biostat.: 2013; Volume 3 ,17-29.
[14] Menyaev, Y.A.; Nedosekin, D.A.; Sarimollaoglu, M.; Juratli, M.A.; Galanzha, E.I.; Tuchin, V.V.; Zharov, V.P.; Optical clearing in photoacoustic flow cytometry; Biomed. Optic. Express: 2013; Volume 4 ,3030-3041.
[15] Menyaev, Y.A.; Carey, K.A.; Nedosekin, D.A.; Sarimollaoglu, M.; Galanzha, E.I.; Stumhofer, J.S.; Zharov, V.P.; Preclinical photoacoustic models: application for ultrasensitive single cell malaria diagnosis in large vein and artery; Biomed. Optic. Express: 2016; Volume 7 ,3643-3658.
[16] Juratli, M.A.; Menyaev, Y.A.; Sarimollaoglu, M.; Melerzanov, A.V.; Nedosekin, D.A.; Culp, W.C.; Suen, J.Y.; Galanzha, E.I.; Zharov, V.P.; Noninvasive label-free detection of circulating white and red blood clots in deep vessels with a focused photoacoustic prob; Biomed. Opt. Express: 2018; Volume 9 ,5667-5677.
[17] Sitek, A.; Celler, A.M.; Limitations of Poisson statistics in describing radioactive decay; Phys. Med.: 2015; Volume 31 ,1105-1107.
[18] Menyaev, Y.A.; Zharov, V.P.; Experience in development of therapeutic photomatrix equipment; Biomed. Eng.: 2006; Volume 40 ,57-63.
[19] Menyaev, Y.A.; Zharov, V.P.; Experience in the use of therapeutic photomatrix equipment; Biomed. Eng.: 2006; Volume 40 ,144-147.
[20] Knuth, D.E.; ; Art of Computer Programming, Volume 2: Seminumerical Algorithms: Boston, MA, USA 2014; ,784.
[21] Knuth, D.E.; ; Art of Computer Programming, Volume 4A: Combinatorial Algorithms, Part 1: Boston, MA, USA 2011; ,912. · Zbl 1354.68001
[22] Poisson Distribution; ; .
[23] Kolmogorov, A.N.; Fomin, S.V.; ; Elements of the Theory of Functions and Functional Analysis: Mineola, NY, USA 1974; ,128.
[24] Deon, A.F.; Menyaev, Y.A.; The Complete Set Simulation of Stochastic Sequences without Repeated and Skipped Elements; J. Univers. Comput. Sci.: 2016; Volume 22 ,1023-1047.
[25] Deon, A.F.; Menyaev, Y.A.; Parametrical tuning of twisting generators; J. Comput. Sci.: 2016; Volume 12 ,363-378.
[26] Deon, A.F.; Menyaev, Y.A.; Twister generator of arbitrary uniform sequences; J. Univers. Comput. Sci.: 2017; Volume 23 ,353-384.
[27] Deon, A.F.; Menyaev, Y.A.; Uniform twister plane generator; J. Comput. Sci.: 2018; Volume 14 ,260-272.
[28] Diehard Tests; ; .
[29] The Marsaglia Random Number CDROM Including the Diehard Battery of Tests of Randomness; ; .
[30] Runs Test for Detecting Non-randomness; ; .
[31] Sample 33092: Wald-Wolfowitz (or Runs) Test for Randomness; ; .
[32] Alhakim, A.; Hooper, W.; A non-parametric test for several independent samples; J. Nonparametric Stat.: 2008; Volume 20 ,253-261. · Zbl 1216.62066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.