zbMATH — the first resource for mathematics

Unitary \(t\)-groups. (English) Zbl 07257215
Summary: Relying on the main results of [GT], we classify all unitary \(t\)-groups for \(t\geq 2\) in any dimension \(d\geq 2\). We also show that there is essentially a unique unitary 4-group, which is also a unitary 5-group, but not a unitary \(t\)-group for any \(t\geq 6\).

20C15 Ordinary representations and characters
05B30 Other designs, configurations
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
Full Text: DOI Euclid
[1] [A] M. Aschbacher, On the maximal subgroups of the finite classical groups, Invent. Math., 76 (1984), 469-514. · Zbl 0537.20023
[2] [Atlas] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups, Clarendon Press, Oxford, 1985. · Zbl 0568.20001
[3] [FH] W. Fulton and J. Harris, Representation Theory, Grad. Texts in Math., 129, Springer-Verlag, New York, 1991.
[4] [GAP] The GAP group, GAP — Groups, Algorithms, Programming, version 4.4, 2004, http://www.gap-system.org.
[5] [GHMP] M. Geck, G. Hiss, F. Lübeck, G. Malle and G. Pfeiffer, CHEVIE — a system for computing and processing generic character tables, Appl. Algebra Engrg. Comm. Comput., 7 (1996), 175-210. · Zbl 0847.20006
[6] [Gr] R. L. Griess, Jr., Automorphisms of extra special groups and nonvanishing degree 2 cohomology, Pacific J. Math., 48 (1973), 403-422. · Zbl 0283.20028
[7] [GAE] D. Gross, K. Audenaert and J. Eisert, Evenly distributed unitaries: On the structure of unitary designs, J. Math. Phys., 48 (2007), 052104. · Zbl 1144.81351
[8] [GMST] R. M. Guralnick, K. Magaard, J. Saxl and P. H. Tiep, Cross characteristic representations of symplectic and unitary groups, J. Algebra, 257 (2002), 291-347. · Zbl 1025.20002
[9] [GMT] R. M. Guralnick, K. Magaard and P. H. Tiep, Symmetric and alternating powers of Weil representations of finite symplectic groups, Bull. Inst. Math. Acad. Sin. (N.S.), 13 (2018), 443-461. · Zbl 07069218
[10] [GT] R. M. Guralnick and P. H. Tiep, Decompositions of small tensor powers and Larsen’s conjecture, Represent. Theory, 9 (2005), 138-208. · Zbl 1109.20040
[11] [He] C. Hering, Transitive linear groups and linear groups which contain irreducible subgroups of prime order. II, J. Algebra, 93 (1985), 151-164. · Zbl 0583.20003
[12] [Hu] B. Huppert, Endliche Gruppen. I, Springer-Verlag, 1967.
[13] [Is] I. M. Isaacs, Character Theory of Finite Groups, AMS-Chelsea, Providence, 2006. · Zbl 1119.20005
[14] [L] M. W. Liebeck, The affine permutation groups of rank three, Proc. London Math. Soc. (3), 54 (1987), 477-516. · Zbl 0621.20001
[15] [Lu] F. Lübeck, Small degree representations of finite Chevalley groups in defining characteristic, LMS J. Comput. Math., 4 (2001), 135-169. · Zbl 1053.20008
[16] [Mag] K. Magaard, On the irreducibility of alternating powers and symmetric squares, Arch. Math., 63 (1994), 211-215. · Zbl 0824.20012
[17] [MM] K. Magaard and G. Malle, Irreducibility of alternating and symmetric squares, Manuscripta Math., 95 (1998), 169-180. · Zbl 0919.20009
[18] [MMT] K. Magaard, G. Malle and P. H. Tiep, Irreducibility of tensor squares, symmetric squares and alternating squares, Pacific J. Math., 202 (2002), 379-427. · Zbl 1072.20013
[19] [M] G. Malle, Almost irreducible tensor squares, Comm. Algebra, 27 (1999), 1033-1051. · Zbl 0931.20009
[20] [Mi] J. Michel, The development version of the CHEVIE package of GAP3, J. Algebra, 435 (2015), 308-336.
[21] [RS] A. Roy and A. J. Scott, Unitary designs and codes, Des. Codes Cryptogr., 53 (2009), 13-31. · Zbl 1172.05310
[22] [S+] M. Schönert et al., GAP - Groups, Algorithms, and Programming, sixth edition, Lehrstuhl D für Mathematik, RWTH Aachen, Germany, 1997.
[23] [Sc] A. J. Scott, Optimizing quantum process tomography with unitary 2-designs, J. Phys. A, 41 (2008), 055308. · Zbl 1141.81009
[24] [ST] G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canad. J. Math., 6 (1954), 274-304. · Zbl 0055.14305
[25] [TZ1] P. H. Tiep and A. E. Zalesskii, Minimal characters of the finite classical groups, Comm. Algebra, 24 (1996), 2093-2167. · Zbl 0901.20031
[26] [TZ2] P. H. Tiep and A. E. Zalesskii, Some characterizations of the Weil representations of the symplectic and unitary groups, J. Algebra, 192 (1997), 130-165. · Zbl 0877.20030
[27] [ZKGG] H. Zhu, R. Kueng, M. Grassl and D. Gross, The Clifford group fails gracefully to be a unitary 4-design, arXiv:1609.08172v1.
[28] [Zs] K. · JFM 24.0176.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.