Characterizations and constructions of triple-cycle permutations of the form \(x^rh(x^s)\). (English) Zbl 1465.11231

Summary: Let \(\mathbb{F}_q\) be the finite field with \(q\) elements and let \(f\) be a permutation polynomial over \(\mathbb{F}_q\). Let \(S_q\) denote the symmetric group on \(\mathbb{F}_q\). In this paper, we mainly investigate some characterizations on the elements \(f\in S_q\) of order 3, i.e., \(f\circ f\circ f=I\), where \(f\) is also called a triple-cycle permutation in the literature. Some explicit triple-cycle permutations are constructed.


11T06 Polynomials over finite fields
94A60 Cryptography


Full Text: DOI


[1] Advanced Encryption Standard. http://en.wikipedia.org/wiki/RijndaelS-box. · Zbl 1130.68047
[2] Akbary, A.; Wang, Q., On polynomials of the form \(x^rf(x^{(q-1)/l})\), Int. J. Math. Math. Sci., 2007, 23408 (2007) · Zbl 1135.11341
[3] Biryukov, A., Analysis of involutional ciphers: Khazad and Anubis, Fast Softw. Encryption, 2887, 45-53 (2003) · Zbl 1254.94026
[4] Borghoff, J.; Canteaut, A.; Güneysu, T.; Kavun, EB; Knezevic, M.; Knudsen, LR; Leander, G.; Nikov, V.; Paar, CC; Rechberger, C.; Rombouts, P.; Thomsen, S.; Yalcin, T., PRINCE: a low-latency block cipher for pervasive computing applications, Adv. Cryptol., 7658, 208-225 (2012) · Zbl 1292.94035
[5] Charpin, P.; Mesnager, S.; Sarkar, S., Dickson polynomials that are involutions, Contemporary Developments in Finite Fields and Their Applications, 22-45 (2016), Singapore: World Scientific Press, Singapore · Zbl 1382.11087
[6] Charpin, P.; Mesnager, S.; Sarkar, S., Involutions over the Galois Field \(\mathbb{F}_{2^n} \), IEEE Trans. Inf. Theory, 62, 4, 2266-2276 (2016) · Zbl 1359.94789
[7] Cid, C.; Huang, T.; Peyrin, T.; Sasaki, Y.; Song, L., Boomerang connectivity table: a new cryptanalysis tool, Adv. Cryptol., 10821, 683-714 (2018) · Zbl 1428.94065
[8] Coulter, RS; Mesnager, S., Bent functions from involutions over \(\mathbb{F}_{2^n} \), IEEE Trans. Inf. Theory, 64, 4, 2979-2986 (2018) · Zbl 1392.94966
[9] Ding, C.; Qu, L.; Wang, Q.; Yuan, J.; Yuan, P., Permutation trinomials over finite fields with even characteristic, SIAM J. Discret. Math., 29, 79-92 (2015) · Zbl 1352.11102
[10] Gupta, R.; Sharma, RK, Some new classes of permutation trinomials over finite fields with even characteristic, Finite Fields Appl., 41, 89-96 (2016) · Zbl 1372.11108
[11] Li, K.; Qu, L.; Sun, B.; Li, C., New results about the boomerang uniformity of permutation polynomials, IEEE Trans. Inf. Theory, 65, 11, 7542-7553 (2019) · Zbl 1433.94088
[12] Liu, X.; Chen, Y.; Xu, Y.; Sun, Z., Triple-cycle permutations over finite fields of characteristic two, Int. J. Found. Comp. Sci., 30, 2, 275-292 (2019) · Zbl 1415.05005
[13] Mullen, GL, Permutation polynomials over finite fields, Finite Fields, Coding Theory, and Advances in Communication and Computing, 131-151 (1991), Las Vegas, NY: Dekker, Las Vegas, NY
[14] Park, YH; Lee, JB, Permutation polynomials and group permutation polynomials, Bull. Aust. Math. Soc., 63, 67-74 (2001) · Zbl 0981.11039
[15] Tu, Z.; Zeng, X.; Hu, L., Several classes of complete permutation polynomials, Finite Fields Appl., 25, 182-193 (2014) · Zbl 1284.05012
[16] Wan, D.; Lidl, R., Permutation polynomials of the form \(x^rf(x^{(d-1)/d})\) and their group structure, Monatshefte für Math., 112, 2, 149-163 (1991) · Zbl 0737.11040
[17] Wang Q.: Cyclotomic mapping permutation polynomials over finite fields. Proceedings of the 2007 international conference on Sequences, subsequences, and consequences (SSC 2007), 119-128, Los Angeles, CA, USA (2007) · Zbl 1154.11342
[18] Wang, Q., On inverse permutation polynomials, Finite Fields Appl., 15, 207-213 (2009) · Zbl 1183.11075
[19] Wang, Q., Cyclotomy and permutation polynomials of large indices, Finite Fields Appl., 22, 57-69 (2013) · Zbl 1331.11107
[20] Wang Q.: Polynomials over finite fields: an index approach. In the Proceedings of Pseudo-Randomness and Finite Fields, Multivariate Algorithms and their Foundations in Number Theory, October 15-19, Linz, 2018, Combinatorics and Finite Fields, Difference Sets, Polynomials, Pseudorandomness and Applications, pp. 319-348 (2019)
[21] Zha, Z.; Hu, L.; Fan, S., Further results on permutation trinomials over finite fields with even characteristic, Finite Fields Appl., 45, 43-52 (2017) · Zbl 1362.05006
[22] Zheng, D.; Yuan, M.; Li, N.; Hu, L.; Zeng, X., Constructions of involutions over finite fields, IEEE Trans. Inf. Theory, 65, 12, 7876-7883 (2019) · Zbl 1433.11136
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.