zbMATH — the first resource for mathematics

Non-averaged regularized formulations as an alternative to semi-analytical orbit propagation methods. (English) Zbl 1451.70037
Summary: This paper is concerned with the comparison of semi-analytical and non-averaged propagation methods for Earth satellite orbits. We analyze the total integration error for semi-analytical methods and propose a novel decomposition into dynamical, model truncation, short-periodic, and numerical error components. The first three are attributable to distinct approximations required by the method of averaging, which fundamentally limit the attainable accuracy. In contrast, numerical error, the only component present in non-averaged methods, can be significantly mitigated by employing adaptive numerical algorithms and regularized formulations of the equations of motion. We present a collection of non-averaged methods based on the integration of existing regularized formulations of the equations of motion through an adaptive solver. We implemented the collection in the orbit propagation code THALASSA, which we make publicly available, and we compared the non-averaged methods with the semi-analytical method implemented in the orbit propagation tool STELA through numerical tests involving long-term propagations (on the order of decades) of LEO, GTO, and high-altitude HEO orbits. For the test cases considered, regularized non-averaged methods were found to be up to two times slower than semi-analytical for the LEO orbit, to have comparable speed for the GTO, and to be ten times as fast for the HEO (for the same accuracy). We show for the first time that efficient implementations of non-averaged regularized formulations of the equations of motion, and especially of non-singular element methods, are attractive candidates for the long-term study of high-altitude and highly elliptical Earth satellite orbits.
70M20 Orbital mechanics
70K65 Averaging of perturbations for nonlinear problems in mechanics
Full Text: DOI
[1] Amato, D., Baù, G., Bombardelli, C.: Accurate orbit propagation in the presence of planetary close encounters. Mon. Not. R. Astron. Soc. 470(2), 2079-2099 (2017). https://doi.org/10.1093/mnras/stx1254
[2] Amato, D., Rosengren, A.J., Bombardelli, C.: THALASSA: a fast orbit propagator for near-Earth and cislunar space. In: 2018 Space Flight Mechanics Meeting, American Institute of Aeronautics and Astronautics (2018). https://doi.org/10.2514/6.2018-1970
[3] Anselmo, L., Cordelli, A., Farinella, P., Pardini, C., Rossi, A.: Modelling the evolution of the space debris population: recent research work in Pisa. In: 2nd European Conference on Space Debris, Darmstadt, Germany, ESA Special Publication, vol. 393, pp. 339-344 (1997). http://adsabs.harvard.edu/abs/1997ESASP.393..339A
[4] Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics, revised edn. AIAA Education Series, American Institute of Aeronautics and Astronautics, Reston (1999). https://doi.org/10.2514/4.861543 · Zbl 0972.70001
[5] Baù, G., Bombardelli, C.: Time elements for enhanced performance of the Dromo orbit propagator. Astronom. J. 148(3), 43 (2014). https://doi.org/10.1088/0004-6256/148/3/43
[6] Baù, G., Urrutxua, H., Peláez, J.: EDromo: an accurate propagator for elliptical orbits in the perturbed two-body problem. Adv. Astronaut. Sci. 152, 379-399. Proceedings of the 24th AAS/AIAA Space Flight Mechanics Meeting, January 26-30, 2014, Santa Fe, New Mexico (2014)
[7] Baù, G., Bombardelli, C., Peláez, J., Lorenzini, E.: Non-singular orbital elements for special perturbations in the two-body problem. Mon. Not. R. Astron. Soc. 454, 2890-2908 (2015). https://doi.org/10.1093/mnras/stv2106. http://adsabs.harvard.edu/abs/2015MNRAS.454.2890B
[8] Biancale, R., Balmino, G., Lemoine, J.M., Marty, J.C., Moynot, B., Barlier, F., et al.: A new global Earth’s gravity field model from satellite orbit perturbations: GRIM5-s1. Geophys. Res. Lett. 27(22), 3611-3614 (2000). https://doi.org/10.1029/2000gl011721
[9] Bond, V.R., Allman, M.C.: Modern Astrodynamics, pp. 117-146. Princeton University Press, Princeton (1996)
[10] Broucke, R.: Regularized special perturbation techniques using Levi-Civita variables. In: 3rd and 4th Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics, Paper 66-8 (1966)
[11] Brouwer, D.: On the accumulation of errors in numerical integration. Astronom. J. 46, 149-153 (1937). https://doi.org/10.1086/105423
[12] Bull, J.M., Smith, L.A., Pottage, L., Freeman, R.: Benchmarking Java against C and Fortran for scientific applications. In: Proceedings of the 2001 Joint ACM-ISCOPE Conference on Java Grande, pp. 97-105. Association for Computing Machinery, Palo Alto (2001) · Zbl 1009.68540
[13] Burdet, C.A.: Le mouvement Keplerien et les oscillateurs harmoniques. J. Reine Angew. Math. 238, 71-84 (1969) · Zbl 0193.25101
[14] CNES (2016) STELA 3.1.1 user manual. Technical Report. https://logiciels.cnes.fr/sites/default/files/Stela-User-Manual_4.pdf
[15] Coffey, S.L., Deprit, A., Miller, B.R.: The critical inclination in artificial satellite theory. Cel. Mech. 39(4), 365-406 (1986). https://doi.org/10.1007/bf01230483 · Zbl 0645.70018
[16] Coffey, S.L., Neal, H.L., Visel, C.L., Conolly, P.: Demonstration of a special-perturbations-based catalog in the naval space command system. Adv. Astronaut. Sci. 99(1), 227-247 (1998)
[17] Dahlquist, G., Björck, A.: Numerical Methods, pp. 1-20. Dover, Mineola (1974) · Zbl 1029.65002
[18] Danielson, D.A., Sagovac, C.P., Neta, B., Early, L.W.: Semianalytic satellite theory. Technical Report ADA276836, Department of Mathematics, Naval Postgraduate School, Monterey (1995)
[19] Deprit, A.: Ideal elements for perturbed Keplerian motions. J. Res. Nat. Bur. Stand. 79, 1-15 (1975). http://adsabs.harvard.edu/abs/1975JRNBS..79....1D · Zbl 0326.70010
[20] Dichmann, D.J., Lebois, R., Carrico, J.P.: Dynamics of orbits near 3:1 resonance in the Earth-Moon system. J. Astronaut. Sci. 60(1), 51-86 (2013). https://doi.org/10.1007/s40295-014-0009-x
[21] Eichhorn, H., Cano, J.L., McLean, F., Anderl, R.: A comparative study of programming languages for next-generation astrodynamics systems. CEAS Space J. 10(1), 115-123 (2017). https://doi.org/10.1007/s12567-017-0170-8
[22] Ely, T.A.: Mean element propagations using numerical averaging. J. Astronaut. Sci. 61(3), 275-304 (2014). https://doi.org/10.1007/s40295-014-0020-2
[23] Ferrándiz, J.M.: A general canonical transformation increasing the number of variables with application in the two-body problem. Cel. Mech. 41, 343-357 (1988) · Zbl 0648.70009
[24] Giacaglia, G.E.O.: The equations of motion of an artificial satellite in nonsingular variables. Cel. Mech. 15, 191-215 (1977). https://doi.org/10.1007/BF01228462 · Zbl 0381.70035
[25] Gkolias, I., Daquin, J., Gachet, F., Rosengren, A.J.: From order to chaos in Earth satellite orbits. Astron. J. 152(5), 119 (2016). https://doi.org/10.3847/0004-6256/152/5/119
[26] Golikov, A.R.: THEONA—a numerical-analytical theory of motion of artificial satellites of celestial bodies. Cosm. Res. 50(6), 449-458 (2012). https://doi.org/10.1134/s0010952512060020
[27] Hoots, F.R., Schumacher Jr., P.W., Glover, R.A.: History of analytical orbit modeling in the US space surveillance system. J. Guid. Control Dyn. 27(2), 174-185 (2004). https://doi.org/10.2514/1.9161
[28] Jacchia, L.G.: Thermospheric temperature, density, and composition: new models. SAO Special Report 375 (1977)
[29] Kaula, W.M.: Theory of Satellite Geodesy. Applications of Satellites to Geodesy. Blaisdell, Waltham (1966) · Zbl 0973.86001
[30] Klinkrad, H., Martin, C., Walker, R.: Space Debris Models and Risk Analysis. Springer, Berlin (2006). https://doi.org/10.1007/3-540-37674-7_5
[31] Kustaanheimo, P., Stiefel, E.L.: Perturbation theory of Kepler motion based on spinor regularization. J. Reine Angew. Math. 218, 204-219 (1965) · Zbl 0151.34901
[32] Kwok, J.H.: The long-term orbit predictor (LOP). Report EM 312/86-151. Jet Propulsion Laboratory, Pasadena (1986)
[33] Lamy, A., Le Fevre, C., Sarli, B.: Analysis of geostationary transfer orbit long term evolution and lifetime. In: Proceedings of the 22nd International Symposium on Space Flight Dynamics, San José dos Campos (2011)
[34] Lara, M.: Note on the ideal frame formulation. Cel. Mech. Dyn. Astr. 129, 137-151 (2017). https://doi.org/10.1007/s10569-017-9770-z. http://adsabs.harvard.edu/abs/2017CeMDA.129..137L. arXiv:1612.08367 · Zbl 1375.70074
[35] Lara, M., San-Juan, J.F., López, L.M., Cefola, P.J.: On the third-body perturbations of high-altitude orbits. Cel. Mech. Dyn. Astr. 113(4), 435-452 (2012). https://doi.org/10.1007/s10569-012-9433-z
[36] Lara, M., San-Juan, J.F., López-Ochoa, L.M.: Proper averaging via parallax elimination. Adv. Astronaut. Sci. 150, 315-331. Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, August 2013, Hilton Head (2013)
[37] Lara, M., San-Juan, J.F., Hautesserres, D.: HEOSAT: a mean elements orbit propagator program for highly elliptical orbits. CEAS Space J. (2017). https://doi.org/10.1007/s12567-017-0152-x
[38] Le Fèvre, C., Fraysse, H., Morand, H., Lamy, A., Cazaux, C., Mercier, P., et al.: Compliance of disposal orbits with the French space operations act: the good practices and the STELA tool. Acta Astronaut. 94(1), 234-245 (2014). https://doi.org/10.1016/j.actaastro.2013.07.038
[39] Liou, J.C., Hall, D.T., Krisko, P.H., Opiela, J.N.: LEGEND—a three-dimensional LEO-to-GEO debris evolutionary model. Adv. Space Res. 34(5), 981-986 (2004). https://doi.org/10.1016/j.asr.2003.02.027
[40] Möckel, M.: High performance propagation of large object populations in earth orbits. Ph.D. Thesis, Technische Universität Braunschweig, Braunschweig (2015)
[41] Meeus, J.: Astronomical Algorithms. Willmann-Bell, Richmond (1998)
[42] Milani, A., Nobili, A.M.: Integration error over very long time spans. Cel. Mech. 43, 1-34 (1987). https://doi.org/10.1007/BF01234550 · Zbl 0664.70014
[43] Morand, V., Caubet, A., Deleflie, F., Daquin, J., Fraysse, H.: Semi analytical implementation of tesseral harmonics perturbations for high eccentricity orbits. Adv. Astronaut. Sci., Univelt, Inc., vol. 150, pp. 705-722. Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, August 2013, Hilton Head, SC, USA (2013)
[44] Morbidelli, A.: Modern Celestial Mechanics. Advances in Astronomy and Astrophysics. Taylor & Francis, London (2002)
[45] Moser, J., Zehnder, E.J.: Notes on Dynamical Systems. Courant Lecture Notes in Mathematics. American Mathematical Society, Providence (2005) · Zbl 1087.37001
[46] Murray, C.D., Dermott, S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (1999). https://doi.org/10.1017/cbo9781139174817 · Zbl 0957.70002
[47] Nacozy, P.E., Dallas, S.S.: The geopotential in nonsingular orbital elements. Cel. Mech. 15, 453-466 (1977). https://doi.org/10.1007/BF01228611 · Zbl 0366.70023
[48] NASA, NOAA and US Air Force: US Standard Atmosphere. Technical Report NASA-TM-X-74335, Washington, DC (1976)
[49] Peláez, J., Hedo, J.M., Rodríguez de Andrés, P.: A special perturbation method in orbital dynamics. Cel. Mech. Dyn. Astr. 97, 131-150 (2007). https://doi.org/10.1007/s10569-006-9056-3. http://adsabs.harvard.edu/abs/2007CeMDA..97..131P · Zbl 1162.70022
[50] Picone, J.M., Hedin, A.E., Drob, D.P., Aikin, A.C.: NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J. Geophys. Res. Space Phys. 107(A12), 15-16 (2002). https://doi.org/10.1029/2002JA009430
[51] Pines, S.: Uniform representation of the gravitational potential and its derivatives. AIAA J. 11(11), 1508-1511 (1973). https://doi.org/10.2514/3.50619 · Zbl 0268.70009
[52] Radhakrishnan, K., Hindmarsh, A.C.: Description and Use of LSODE, the Livermore Solver for Ordinary Differential Equations. Technical Report UCRL-ID-113855, Lawrence Livermore National Laboratory (1993)
[53] Roa, J.: Regularization in Orbital Mechanics: Theory and Practice. De Gruyter, Berlin (2017). https://doi.org/10.1515/9783110559125. http://adsabs.harvard.edu/abs/2017rom..book.....R · Zbl 1396.70003
[54] Rossi, A., Anselmo, L., Pardini, C., Jehn, R., Valsecchi, G.B.: The new space debris mitigation (SDM 4.0) long term evolution code. In: 5th European Conference on Space Debris, Darmstadt, Germany, ESA Special Publication, vol. 672, p. 90 (2009). http://adsabs.harvard.edu/abs/2009ESASP.672E..90R
[55] Sellamuthu, H., Sharma, R.K.: Orbit theory with lunar perturbation in terms of Kustaanheimo-Stiefel regular elements. J. Guid. Control Dyn. 40(5), 1272-1277 (2017). https://doi.org/10.2514/1.g002342
[56] Sellamuthu, H., Sharma, R.K.: Hybrid orbit propagator for small spacecraft using Kustaanheimo-Stiefel elements. J. Spacecr. Rockets 55(5), 1282-1288 (2018). https://doi.org/10.2514/1.a34076
[57] Setty, S., Cefola, P.J., Montenbruck, O., Fiedler, H.: Application of semi-analytical satellite theory orbit propagator to orbit determination for space object catalog maintenance. Adv. Space Res. 57, 2218-2233 (2016). https://doi.org/10.1016/j.asr.2016.02.028
[58] Sperling, H.: Computation of Keplerian conic sections. J. Am. Rocket Soc. 31(5), 660-661 (1961)
[59] Stiefel, E.L., Scheifele, G.: Linear and Regular Celestial Mechanics, Die Grundlehren der Mathematischen Wissenschaften, vol. 174. Springer, Berlin (1971). https://doi.org/10.1007/978-3-642-65027-7 · Zbl 0226.70005
[60] Uphoff, C.: Numerical averaging in orbit prediction. AIAA J. 11(11), 1512-1516 (1973). https://doi.org/10.2514/3.50620 · Zbl 0268.70028
[61] Vallado, D.A., Crawford, P., Hujsak, R., Kelso, T.S.: Revisiting Spacetrack Report #3. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Keystone, Colorado, United States. https://doi.org/10.2514/6.2006-6753. Paper AIAA 2006-6753 (2006)
[62] van der Ha, J.C.: Long-term evolution of near-geostationary orbits. J. Guid. Control Dyn. 9(3), 363-370 (1986). https://doi.org/10.2514/3.20115
[63] Williams, J., Senent, J.S., Ocampo, C., Ravi, M., Davis, E.C.: Overview and software architecture of the Copernicus trajectory design and optimization system. In: 4th International Conference on Astrodynamics Tools and Techniques. European Space Astronomy Centre (ESAC), Madrid (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.