Salon, Olivier Quelles tuiles! (Pavages apériodiques du plan et automates bidimensionnels). (Aperiodic tilings of the plane and two-dimensional automata). (French) Zbl 0726.11020 Sémin. Théor. Nombres Bordx., Sér. II 1, No. 1, 1-26 (1989). It is proved that the regular Robinson tiling of the plane [see B. Gruenbaum and G. C. Shephard, Tilings and patterns (New York 1987; Zbl 0601.05001)], restricted to a quadrant, can be viewed as a two- dimensional fixed point \((t(m,n))_{(m,n)\in {\mathbb{N}}^ 2}\) of a (2,2)- substitution. Actually, there are 48 subsequences of the form \((t(p^ km+r,p^ kn+s))_{m,n},k\in {\mathbb{N}},\quad 0\leq r,s<p^ k\) with \(p=2\) and the result follows from a theorem due to the author [Sémin. Théor. Nombres, Univ. Bordeaux I 1986/1987, Exp. No.4 (1987; Zbl 0653.10049)] which characterizes fixed points t of (p,p)-substitutions by the finiteness of the set of subsequences of the above type. Reviewer: P.Liardet (Marseille) Cited in 7 Documents MSC: 11B85 Automata sequences 05B45 Combinatorial aspects of tessellation and tiling problems 68Q80 Cellular automata (computational aspects) Keywords:aperiodic tiling; 2-dimensional finite automata; regular Robinson tiling; fixed point; substitution Citations:Zbl 0601.05001; Zbl 0653.10049 × Cite Format Result Cite Review PDF Full Text: DOI Numdam EuDML References: [1] Allouche, J.-P., Salon, O., Quasiperiodic tilings and finite automata. preprint [2] Berger, M.,, Géométrie, Cédic/FernandNathan, Tome I (1977), 33-43. · Zbl 0382.51011 [3] Blanchard, A. et Mendes France, M., Symétrie et transcendance, Bull. Sci. Math.106 (1982), 325-335. · Zbl 0492.10027 [4] Christol, G., Kamae, T., Mendes France, M. et Rauzy, G., Suites algébriques, automates et substitutions, Bull. Soc. Math. France108 (1980), 401-419. · Zbl 0472.10035 [5] Cobham, A., Uniform tag sequences, Mathem. Syst. Theory6 (1972), 164-192. · Zbl 0253.02029 [6] Grunbaum, B. et Shephard, G.C., Tilings and patterns, W.H. Freeman and CompanyNew-York (1987). · Zbl 0601.05001 [7] Penrose, R., The role of aesthetics in pure and applied mathematical research, Bull. Inst. Math. Appl.10 (1974), 266-271. [8] Schechtman, D., Quasiperiodic crystals - Experimental evidence, Journal de Physique, Colloque C3 Supplément au n° 7, Tome 47. juillet 1986 [9] Schechtman, D., Blech, I.A., Gratias, D. et Cahn, J.W., Physical Review Letters, n° 2053 (1984), 1951-1953. [10] Salon, O., Suites automatiques à multi-indices” Séminaire de Théorie des Nombres de Bordeaux (1986- 1987). exposé n° 4. · Zbl 0653.10049 [11] Voderberg, H., Zur Zerlegung eines ebenen Bereiches in kongruente Bereiche in Form einer Spirale, Jber. dtsch. Math. Ver., 46 (1936), 229-231. et aussi 46, (1937), 159-160. · JFM 63.1183.05 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.