×

On the Milnor fibrations of weighted homogeneous polynomials. (English) Zbl 0726.14002

“Let \(w=(w_ 0,...,w_ n)\) be a set of integer positive weights and let S be the polynomial ring \({\mathbb{C}}[x_ 0,...,x_ n]\) graded by the conditions \(\deg (x_ i)=w_ i\). Let f be a weighted homogeneous polynomial of degree \( N.\) The Milnor fibration of f is the locally trivial fibration \(f:\;{\mathbb{C}}^{n+1}\setminus f^{-1}(0)\to {\mathbb{C}}\setminus \{0\}\) with typical fiber F: \(f^{-1}(1).''\)
Spectral sequence techniques are used to arrive at a formula for the cohomology groups of F. In the case of isolated singularities more is known about F [see for example E. Brieskorn, Manuscr. Math. 2, 103- 161 (1970; Zbl 0186.261)]. The results in this work apply to more general f with (possibly) nonisolated singularities. There is a good number of interesting examples of explicit calculations using the spectral sequences introduced which illustrate why they should be useful in many situations. - A theorem is stated relating a filtration induced by one of the spectral sequences introduced and the Hodge filtration, and it allows one to extend a result of P. A. Griffiths [Ann. Math., II. Ser. 90, 460-495; 496-541 (1969; Zbl 0215.081)] on reductions of rational n-forms on (complex) projective spaces with a nonsingular polar locus to the singular case.
The author points out in a note that the theorem is correct (although the proof given is flawed), consequence of a more general result in work done with P. Deligne [“Hodge and order of the pole filtrations for singular hypersurfaces” (preprint); see also Ann. Sci. Éc. Norm. Supér., IV. Sér. 23, No.4, 645-656 (1990)].

MSC:

14B05 Singularities in algebraic geometry
14D99 Families, fibrations in algebraic geometry
32S99 Complex singularities
57R45 Singularities of differentiable mappings in differential topology
PDFBibTeX XMLCite
Full Text: Numdam EuDML

References:

[1] . V.I. Arnold , S.M. Gusein-Zade , A.N. Varchenko , Singularities of Differentiable Maps , vol. I, Monographs in Math. 82, Boston - Basel - Stuttgart, Birkhauser 1985. · Zbl 0554.58001
[2] . B. Berceanu , Formal algebraic varieties, unpublished manuscript .
[3] . E. Brieskorn , Die Monodromie der Isolierten Singularitaten von Hyperflachen . Manuscr. Math. 2 (1970) 103-161. · Zbl 0186.26101
[4] . J.W. Bruce and C.T.C. Wall , On the classification of cubic surfaces , J. London Math. Soc. (2) 19, (1979) 245-256. · Zbl 0393.14007
[5] . D. Burghelea and A. Verona , Local homological properties of analytic sets . Manuscr. Math. 7, (1972) 55-66. · Zbl 0246.32007
[6] . P. Deligne , Theorie de Hodge II, III . Publ. Math. IHES 40, 5-58 (1971) and 44, (1974) 5 - 77. · Zbl 0237.14003
[7] . A. Dimca , On the homology and cohomology of complete intersections with isolated singularities . Compositio Math. 58, (1986) 321-339. · Zbl 0598.14017
[8] . A. Dimca , Topics on Real and Complex Singularities , Braunschweig-Wiesbaden: Vieweg 1987. · Zbl 0628.14001
[9] . I. Dolgachev , Weighted projective varieties . In: Carrell, J.B. (ed) Group Actions and Vector Fields , Proceedings 1981. (Lect. Notes Math., vol. 956, pp. 34-71) Berlin Heidelberg New York: Springer 1982. · Zbl 0516.14014
[10] . H. Esnault , Fibre de Milnor d’un cone sur une courbe plane singuliere , Invent. Math. 68, (1982) 477-496. · Zbl 0475.14018
[11] . A. Fujiki , Duality of mixed Hodge structures of algebraic varieties , Publ. RIMS Kyoto Univ. 16, (1980), 635-667. · Zbl 0475.14006
[12] . G.-M. Greuel , Der Gauss-Manin-Zusammenhang isolierter Singularitaten von vollstandigen Durchschnitten . Math. Ann. 214, (1975) 235-266. · Zbl 0285.14002
[13] . P. Griffiths , On the periods of certain rational integrals I, II , Ann. Math. 90, (1969) 460-541. · Zbl 0215.08103
[14] . A. Grothendieck , On the de Rhan cohomology of algebraic varieties , Publ. Math. IHRES 29, (1966) 351-358. · Zbl 0145.17602
[15] . H. Hamm , Ein Beispiel zur Berechnung der Picard-Lefschetz-Monodromie fur nichtisolierte Hyperflachensingularitaten Mat. Ann. 214, (1975) 221-234. · Zbl 0285.14003
[16] . M. Kato , Y. Matsumoto , On the connectivity of the Milnor fiber of a holomorphic function at a critical point . In: Manifolds, Proceedings Tokyo 1973, pp. 131-136, Univ. of Tokyo Press 1975. · Zbl 0309.32008
[17] . J. Mcclearly , User’s Guide to Spectral Sequences , Publish or Perish: 1985. · Zbl 0577.55001
[18] . M. Oka , On the homotopy types of hypersurfaces defined by weighted homogeneous polynomials . Topology 12, (1973) 19-32. · Zbl 0263.32005
[19] . M. Oka , On the cohomology structure of projective varieties . In: Manifolds , Proceedings Tokyo 1973, pp. 137-143, Univ. of Tokyo Press 1975. · Zbl 0343.14003
[20] . M. Reid , Young person’s guide to canonical singularities , Proc. AMS summer Institute Bowdoin 1985, Proc. Symp. Pure Math. 46, AMS 1987. · Zbl 0634.14003
[21] . J. Scherk , On the monodromy theorem for isolated hypersurface singularities , Invent. math. 58, (1980) 289-301. · Zbl 0432.32010
[22] . J. Scherk , J.H.M. Steenbrink , On the mixed Hodge structure on the cohomology of the Milnor fiber . Math. Ann. 271, (1985) 641-665. · Zbl 0618.14002
[23] . D. Siersma , Quasihomogeneous singularities with transversal type A1 , Contemporary Mathematics 90, Amer. Math. Soc. (1989) 261-294. · Zbl 0682.32012
[24] . J.H.M. Steenbrink , Intersection form for quasihomogeneous singularities . Compositio Math. 34, (1977) 211-223. · Zbl 0347.14001
[25] . J.H.M. Steenbrink , Mixed Hodge Structures and Singularities (book to appear). · Zbl 0671.14003
[26] . D. Van Straten , On the Betti numbers of the Milnor fiber of a certain class of hypersurface singularities . In: Greuel, G.-M., Trautmann, G. (eds) Singularities, Representations of Algebras and Vector Bundles, Proceedings, Lambrecht 1985 (Lect. Notes Math. Vol. 1273, pp. 203-220) Berlin Heidelberg New York: Springer 1987. · Zbl 0638.14001
[27] . Z. Szafraniec , On the Euler characteristic of complex algebraic varieties , Math. Ann. 280, (1988) 177-183. · Zbl 0616.14016
[28] . C.T.C. Wall , A note on symmetry of singularities , Bull. London Math. Soc. 12, 169-175 (1980). · Zbl 0427.32010
[29] . I.N. Yomdin , Complex varieties with 1-dimensional singular locus , Siberian Math. J. 15, (1974) 1061-1082. · Zbl 0325.32003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.