Ribet, Kenneth A. From the Taniyama-Shimura conjecture to Fermat’s last theorem. (English) Zbl 0726.14015 Ann. Fac. Sci. Toulouse, V. Sér., Math. 11, No. 1, 116-139 (1990). The author outlines a proof of his “conjecture \(\epsilon\),” namely that the Taniyama-Shimura-Weil conjecture implies Fermat’s conjecture (by applying it to G. Frey’s elliptic curve). What is new is that he gives a simplified procedure, using the bad reduction at the prime two of the elliptic curve. He thus avoids the use of another auxiliary prime. Reviewer: G.Faltings (Princeton) Cited in 1 Document MSC: 14G05 Rational points 14H52 Elliptic curves 11F80 Galois representations 11G05 Elliptic curves over global fields 11D41 Higher degree equations; Fermat’s equation 14G35 Modular and Shimura varieties Keywords:Taniyama-Shimura-Weil conjecture; Fermat’s conjecture; G. Frey’s elliptic curve; reduction at the prime two PDF BibTeX XML Cite \textit{K. A. Ribet}, Ann. Fac. Sci. Toulouse, Math. (5) 11, No. 1, 116--139 (1990; Zbl 0726.14015) Full Text: DOI Numdam EuDML References: [1] Atkin, A.O.L.) and Lehner, J.) .- Hecke operators on Γo(m), Math. Ann.185, 134-160 (1970) · Zbl 0177.34901 [2] Carayol, H.) .- Sur la mauvaise réduction des courbes de Shimura, Compositio Math.59, 151-230 (1986) · Zbl 0607.14021 [3] Cerednik, I.V.) .- Uniformization of algebraic curves by discrete arithmetic subgroups of PGL2(kw) with compact quotients (in Russian), Mat. Sb.100 , 59-88 (1976). Translation in Math USSR Sb.29, 55-78 (1976) · Zbl 0379.14010 [4] Deligne, P.) and Rapoport, M.) .- Les schémas de modules de courbes elliptiques, 349, 143-316 (1973) · Zbl 0281.14010 [5] Deligne, P.) AND Serre, J-P.) .- Formes modulaires de poids 1, Ann. Sci. Ec. Norm. Sup.7, 507-530 (1974) · Zbl 0321.10026 [6] Drinfeld, V.G.) .- Coverings of p-adic symmetric regions (in Russian), Functional. Anal. i Prilozen.10, 29-40 (1976). Translation in Funct. Anal. Appl.10, 107-115 (1976) · Zbl 0346.14010 [7] Edixhoven, S.J.) .- Minimal resolution and stable reduction of Xo(N), To appear · Zbl 0679.14009 [8] Edixhoven, S.J.) .- L’action de l’algèbre de Hecke sur les groupes de composantes des jacobiennes des courbes modulaires est “Eisenstein”, To appear · Zbl 0781.14019 [9] Faltings, G.) .- Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math73, 349-366 (1983). English translation in : Arithmetic Geometry, G. Cornell and J. H. Silverman, eds. New York : Springer-Verlag (1986) · Zbl 0588.14026 [10] Frey, G.) .- Links between stable elliptic curves and certain diophantine equations, Annales Universitatis Saraviensis1, 1-40 (1986) · Zbl 0586.10010 [11] Frey, G.) .- Links between solutions of A - B = C and elliptic curves, 1380, 31-62 (1989) · Zbl 0688.14018 [12] Grothendieck, A.) .- SGA7 I, Exposé IX. 288, 313-523 (1972) · Zbl 0248.14006 [13] Husemöller, D.) .- Elliptic Curves, 111. New York: Springer-Verlag (1987) · Zbl 0605.14032 [14] Jordan, B.) and Livné, R.) .- Local diophantine properties of Shimura curves, Math. Ann.270, 235-248 (1985) · Zbl 0536.14018 [15] Jordan, B.) and Livné, R.) .- On the Néron model of Jacobians of Shimura curves, Compositio Math.60, 227-236 (1986) · Zbl 0609.14018 [16] Katz, N.M.) and Mazur, B.) .- Arithmetic Moduli of Elliptic Curves, Annals of Math. Studies108. Princeton: Princeton University Press, (1985) · Zbl 0576.14026 [17] Kurihara, A.) . - On some examples of equations defining Shimura curves and the Mumford uniformization, J. Fac. Sci. Univ. Tokyo, Sec. IA, 25, 277-300 (1979) · Zbl 0428.14012 [18] Mazur, B.) .- Modular curves and the Eisenstein ideal, Publ. Math. IHES47, 33-186 (1977) · Zbl 0394.14008 [19] Mazur, B.) .- Number theory as gadfly, American Math. Monthly. To appear · Zbl 0764.11021 [20] Mazur, B.) AND Ribet, K.) .- Two-dimensional representations in the arithmetic of modular curves, To appear · Zbl 0780.14015 [21] Oesterlé, J.) .- Nouvelles approches du “théorème” de Fermat, Séminaire Bourbaki n° 694 (1987-88). Astérisque161-162, 165-186 (1988) · Zbl 0668.10024 [22] Ogg, A.) .- Rational points on certain elliptic modular curves, Proc. Symp. Pure Math.24, 221-231 (1973) · Zbl 0273.14008 [23] Ogg, A.).- Hyperelliptic modular curves, Bull. SMF102, 449-462 (1974) · Zbl 0314.10018 [24] Raynaud, M.) .- Spécialisation du foncteur de Picard, Publ. Math. IHES38, 27-76 (1970) · Zbl 0207.51602 [25] Ribet, K.) .- On modular representations of Gal(Q/Q) arising from modular forms, Preprint · Zbl 0773.11039 [26] Ribet, K.) .- Bimodules and abelian surfaces, Advanced Studies in Pure Mathematics17, 359-407 (1989) · Zbl 0742.11033 [27] Ribet, K.) .- On the component groups and the Shimura subgroup of Jo(N), Sém. Th. Nombres, Université Bordeaux, 1987-88 · Zbl 0691.14009 [28] Serre, J-P.) .- Abelian l-adic Representations and Elliptic Curves, New York: W.A. Benjamin1968. (Republished 1989 by Addison-Wesley) · Zbl 0186.25701 [29] Serre, J-P.) .- Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math.15, 259-331 (1972) · Zbl 0235.14012 [30] Serre, J-P.) .- Sur les représentations modulaires de degré 2 de Gal(Q/Q), Duke Math. J.54, 179-230 (1987) · Zbl 0641.10026 [31] Serre, J-P.) and Tate, J.) .- Good reduction of abelian varieties, Ann. of Math.88, 492-517 (1968) · Zbl 0172.46101 [32] Shimura, G.) .- Introduction to the Arithmetic Theory of Automorphic Functions, Princeton: Princeton University Press (1971) · Zbl 0221.10029 [33] Shimura, G.) . - On elliptic curves with complex multiplication as factors of the Jacobians of modular function fields, Nagoya Math. J.43, 199-208 (1971) · Zbl 0225.14015 [34] Silverman, J.) .- The Arithmetic of Elliptic Curves, 106. New York: Springer-Verlag (1986) · Zbl 0585.14026 [35] Weil, A.) .- Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann.168, 165- 172 (1967) · Zbl 0158.08601 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.