zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Bounds for modified Bessel functions. (English) Zbl 0726.33003
Inequalities are found for the ratios $I\sb{\nu}(x)/I\sb{\nu}(y)$, $K\sb{\nu}(x)/K\sb{\nu}(y)$ and $tI\sb{\nu}(t)/I\sb{\nu +1}(t),$ where $I\sb{\nu}$ and $K\sb{\nu}$ are the modified Bessel functions of non- integer order. In each case the range of the variables is (0,$\infty)$.

33C10Bessel and Airy functions, cylinder functions, ${}_0F_1$
Full Text: DOI
[1] Abramowitz, M.; Stegun, I. A.: Handbook of mathematical functions. Appl. math. Ser. 55 (1964) · Zbl 0171.38503
[2] Bordelon, D. J.: Solution to problem 72-15. SIAM rev. 15, 666-668 (1973)
[3] E.K. Ifantis and P.D. Siafarikas, Bounds for modified Bessel functions,Rend. Circ. Mat. Palermo,to appear. · Zbl 0754.33001
[4] Jones, A. L.: An extension of an inequality involving modified Bessel functions. J. math. Phys. 47, 220-221 (1968) · Zbl 0159.09603
[5] Laforgia, A.: Inequalities for Bessel functions. J. comput. Appl. math. 15, No. 1, 75-81 (1986) · Zbl 0596.33011
[6] Näsell, I.: Inequalities for modified Bessel functions. Math. comp. 28, 253-256 (1974) · Zbl 0281.33016
[7] Paris, R. P.: An inequality for the Bessel function $Jv(vx)$. SIAM J. Math. anal. 15, 203-205 (1984)
[8] Ross, D. K.: Solution to problem 72-15. SIAM rev. 15, 668-670 (1973)
[9] Simpson, H. C.; Spector, C.: Some monotonicity results for ratios of modified Bessel functions. Quart. appl. Math. 42, 95-98 (1984) · Zbl 0549.33008
[10] Soni, R. P.: On an inequality for modified Bessel functions. J. math. Phys. 44, 406-407 (1965) · Zbl 0137.04801
[11] Watson, G. N.: A treatise on the theory of Bessel functions. (1944) · Zbl 0063.08184