×

zbMATH — the first resource for mathematics

Implicit-explicit second derivative diagonally implicit multistage integration methods. (English) Zbl 07261295
Summary: We introduce a class of implicit-explicit (IMEX) schemes for the numerical solution of initial value problems of differential equations with both non-stiff and stiff components in which non-stiff and stiff solvers are, respectively, based on the explicit general linear methods (GLMs) and implicit second derivative GLMs (SGLMs). The order conditions of the proposed IMEX schemes are obtained. Linear stability properties of the methods are analyzed and then methods up to order four with a large area of absolute stability region of the pair are constructed assuming that the implicit part of the methods is \(L\)-stable. Due to the high stage orders of the constructed methods, they are not marred by order reduction. This is verified by the numerical experiments which demonstrate the efficiency of the proposed methods, too.
MSC:
65L05 Numerical methods for initial value problems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abdi A, Hojjati G (2011a) An extension of general linear methods. Numer Algorithm 57:149-167 · Zbl 1228.65111
[2] Abdi A, Hojjati G (2011b) Maximal order for second derivative general linear methods with Runge-Kutta stability. Appl Numer Math 61:1046-1058 · Zbl 1227.65063
[3] Abdi, A.; Hojjati, G., Implementation of Nordsieck second derivative methods for stiff ODEs, Appl Numer Math, 94, 241-253 (2015) · Zbl 1325.65098
[4] Abdi, A.; Jackiewicz, Z., Towards a code for non-stiff differential systems based on general linear methods with inherent Runge-Kutta stability, Appl Numer Math, 136, 103-121 (2019) · Zbl 1405.65086
[5] Abdi, A.; Braś, M.; Hojjati, G., On the construction of second derivative diagonally implicit multistage integration methods, Appl Numer Math, 76, 1-18 (2014) · Zbl 1288.65104
[6] Asher, UM; Ruuth, SJ; Spiteri, RJ, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Appl Numer Math, 25, 151-167 (1997) · Zbl 0896.65061
[7] Barghi Oskouie, N.; Hojjati, G.; Abdi, A., Efficient second derivative methods with extended stability regions for non-stiff IVPs, Comput Appl Math, 37, 2001-2016 (2018) · Zbl 1404.65062
[8] Boscarino, S., Error analysis of IMEX Runge-Kutta methods derived from differential-algebraic systems, SIAM J Numer Anal, 45, 1600-1621 (2007) · Zbl 1152.65088
[9] Braś, M.; Izzo, G.; Jackiewicz, Z., Accurate implicit-explicit general linear methods with inherent Runge-Kutta stability, J Sci Comput, 70, 1105-1143 (2017) · Zbl 1366.65070
[10] Butcher, JC, On the convergence of numerical solutions to ordinary differential equations, Math Comput, 20, 1-10 (1966) · Zbl 0141.13504
[11] Butcher, JC, Diagonally-implicit multi-stage integration methods, Appl Numer Math, 11, 347-363 (1993) · Zbl 0773.65046
[12] Butcher, JC, Numerical methods for ordinary differential equations (2016), New York: Wiley, New York
[13] Butcher, JC; Hojjati, G., Second derivative methods with RK stability, Numer Algorithm, 40, 415-429 (2005) · Zbl 1084.65069
[14] Butcher, JC; Jackiewicz, Z., Diagonally implicit general linear methods for ordinary differential equations, BIT, 33, 452-472 (1993) · Zbl 0795.65043
[15] Butcher, JC; Jackiewicz, Z., Construction of diagonally implicit general linear methods type 1 and 2 for ordinary differential equations, Appl Numer Math, 21, 385-415 (1996) · Zbl 0865.65056
[16] Butcher, JC; Jackiewicz, Z., Implementation of diagonally implicit multistage integration methods for ordinary differential equations, SIAM J Numer Anal, 34, 2119-2141 (1997) · Zbl 0892.65044
[17] Butcher, JC; Jackiewicz, Z., Construction of high order diagonally implicit multistage integration methods for ordinary differential equations, Appl Numer Math, 27, 1-12 (1998) · Zbl 0933.65080
[18] Butcher, JC; Chartier, P.; Jackiewicz, Z., Experiments with a variable-order type 1 DIMSIM code, Numer Algorithm, 22, 237-261 (1999) · Zbl 0958.65083
[19] Cardone A, Jackiewicz Z, Sandu A, Zhang H (2014a) Extrapolated implicit-explicit Runge-Kutta methods. Math Model Anal 19:18-43
[20] Cardone A, Jackiewicz Z, Sandu A, Zhang H (2014b) Extrapolation-based implicit-explicit general linear methods. Numer Algorithm 65:377-399 · Zbl 1291.65217
[21] Cash, JR, Second derivative extended backward differentiation formulas for the numerical integration of stiff systems, SIAM J Numer Anal, 18, 21-36 (1981) · Zbl 0452.65047
[22] Chan, RPK; Tsai, AYJ, On explicit two-derivative Runge-Kutta methods, Numer Algorithm, 53, 171-194 (2010) · Zbl 1185.65122
[23] Enright, WH, Second derivative multistep methods for stiff ordinary differential equations, SIAM J Numer Anal, 11, 321-331 (1974) · Zbl 0249.65055
[24] Frank, J.; Hundsdorfer, W.; Verwer, JG, On the stability of implicit-explicit linear multistep methods, Appl Numer Math, 25, 193-205 (1997) · Zbl 0887.65094
[25] Hairer, E.; Wanner, G., Solving ordinary differential equations II: stiff and differential-algebraic problems (2010), Berlin: Springer, Berlin · Zbl 1192.65097
[26] Hojjati, G.; Rahimi Ardabili, MY; Hosseini, SM, New second derivative multistep methods for stiff systems, Appl Math Model, 30, 466-476 (2006) · Zbl 1101.65078
[27] Hosseini Nasab, M.; Hojjati, G.; Abdi, A., G-symplectic second derivative general linear methods for Hamiltonian problems, J Comput Appl Math, 313, 486-498 (2017) · Zbl 1353.65133
[28] Hosseini Nasab, M.; Abdi, A.; Hojjati, G., Symmetric second derivative integration methods, J Comput Appl Math, 330, 618-629 (2018) · Zbl 1376.65148
[29] Hundsdorfer, W.; Ruuth, SJ, IMEX extensions of linear multistep methods with general monotonicity and boundedness properties, J Comput Phys, 225, 2016-2042 (2007) · Zbl 1123.65068
[30] Hundsdorfer, W.; Verwer, JG, Numerical solution of time-dependent advection-diffusion-reaction equations (2003), Berlin: Springer, Berlin · Zbl 1030.65100
[31] Izzo, G.; Jackiewicz, Z., Highly stable implicit-explicit Runge-Kutta methods, Appl Numer Math, 113, 71-92 (2017) · Zbl 1355.65096
[32] Jackiewicz, Z., Implementation of DIMSIMs for stiff differential systems, Appl Numer Math, 42, 251-267 (2002) · Zbl 1001.65082
[33] Jackiewicz, Z., General linear methods for ordinary differential equations (2009), New Jersey: Wiley, New Jersey · Zbl 1211.65095
[34] Jackiewicz, Z.; Mittelmann, H., Construction of IMEX DIMSIMs of high order and stage order, Appl Numer Math, 121, 234-248 (2017) · Zbl 1372.65212
[35] Lang, J.; Hundsdorfer, W., Extrapolation-based implicit-explicit peer methods with optimised stability regions, J Comput Phys, 337, 203-215 (2017) · Zbl 1415.65160
[36] Ruuth, SJ, Implicit-explicit methods for reaction-diffusion problems in pattern formation, J Math Biol, 34, 148-176 (1995) · Zbl 0835.92006
[37] Shampine, LF; Reichelt, MW, The MATLAB ODE suite, SIAM J Sci Comput, 18, 1-22 (1997) · Zbl 0868.65040
[38] Soleimani, B.; Knoth, O.; Weiner, R., IMEX peer methods for fast-wave-slow-wave problems, Appl Numer Math, 118, 221-237 (2017) · Zbl 1367.65111
[39] Yousefzadeh, N.; Hojjati, G.; Abdi, A., Construction of implicit-explicit second-derivative BDF methods, Bull Iran Math Soc, 44, 991-1006 (2018) · Zbl 1409.65045
[40] Zhang, H.; Sandu, A.; Blaise, S., Partitioned and implicit-explicit general linear methods for ordinary differential equations, J Sci Comput, 61, 119-144 (2014) · Zbl 1308.65122
[41] Zharovsky, E.; Sandu, A.; Zhang, H., A class of implicit-explicit two-step Runge-Kutta methods, SIAM J Numer Anal, 53, 321-341 (2015) · Zbl 1327.65133
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.