Non-intrusive hierarchical coupling strategies for multi-scale simulations in gravitational dynamics. (English) Zbl 1454.85005

Summary: Hierarchical code coupling strategies make it possible to combine the results of individual numerical solvers into a self-consistent symplectic solution. We explore the possibility of allowing such a coupling strategy to be non-intrusive. In that case, the underlying numerical implementation is not affected by the coupling itself, but its functionality is carried over in the interface. This method is efficient for solving the equations of motion for a self-gravitating system over a wide range of scales. We adopt a dedicated integrator for solving each particular part of the problem and combine the results to a self-consistent solution. In particular, we explore the possibilities of combining the evolution of one or more microscopic systems that are embedded in a macroscopic system. The here presented generalizations of Bridge include higher-order coupling strategies (from the classic 2nd order up to 10th-order), but we also demonstrate how multiple bridges can be nested and how additional processes can be introduced at the bridge time-step to enrich the physics, for example by incorporating dissipative processesor. Such augmentation allows for including additional processes in a classic Newtonian \(N\)-body integrator without alterations to the underlying code. These additional processes include for example the Yarkovsky effect, dynamical friction or relativistic dynamics. Some of these processes operate on all particles whereas others apply only to a subset.
The presented method is non-intrusive in the sense that the underlying methods remain operational without changes to the code (apart from adding the get- and set-functions to enable the bridge operator). As a result, the fundamental integrators continue to operate with their internal time step and preserve their local optimizations and parallelism. Multiple bridges can be nested and coupled hierarchically, allowing for the construction of a complex environment of multiple nested augmented bridges. While the coupling topology may become rather complicated, we introduce the hierarchical coupling language (HCL), a meta language in which complex bridge topologies can be described. The meta language is meant for stimulating the discussion on even more complex hierarchies in which the bridge operators are introduced as patterns. We present example applications for several of these cases and discuss the conditions under which these integrators can be applied. Typical applications range over 10 orders of magnitude in temporal and spatial scales when we apply the method to simulating planetary systems (AU spatial and year-temporal scale) in a star cluster that orbits in the Galaxy (100 kpc-spatial and 10 Gyr-temporal scale).


85A15 Galactic and stellar structure
85-10 Mathematical modeling or simulation for problems pertaining to astronomy and astrophysics
70F15 Celestial mechanics
85-08 Computational methods for problems pertaining to astronomy and astrophysics
65P10 Numerical methods for Hamiltonian systems including symplectic integrators
Full Text: DOI arXiv


[1] Turing, A. M., On computable numbers, with an application to the entscheidungsproblem, Proc London Math Soc, 2, 42, 230-265 (1936) · JFM 62.1059.03
[2] Oberkampf, W. L.; Roy, C. J., Verification and validation in scientific computing, 1st edition (2010), Cambridge University Press: Cambridge University Press New York, NY, USA · Zbl 1211.68499
[3] Moore, G. E., Cramming more components onto integrated circuits, Electronics, 38, 8-12 (1965)
[4] Felleisen, M., On the expressive power of programming languages, Sci Comput Program, 17, 1, 35-75 (1991) · Zbl 0745.68033
[5] Hoekstra, A. G.; Zwart, S. P.; Coveney, P. V., Multiscale modelling, simulation and computing: from the desktop to the exascale, Philos Trans R Soc A: Math Phys Eng Sci, 377, 2142, 20180355 (2019)
[6] Manser, C. J., A planetesimal orbiting within the debris disc around a white dwarf star, Science, 364, 6435, 66-69 (2019)
[7] Fowler, M., Refactoring: improving the design of existing code (1999), Addison-Wesley: Addison-Wesley Boston, MA, USA · Zbl 1020.68632
[8] 565pp. (ISBN: 9781584889090, ISBN 10: 1584889098), pp. 147-164
[9] Groen, D.; Portegies Zwart, S.; Ishiyama, T.; Makino, J., High-performance gravitational n-body simulations on a planet-wide-distributed supercomputer, Computational Science and Discov, 4, 1, 015001 (2011)
[10] Newton, I., Philosophiae Naturalis Principia Mathematica, 1 (1687) · Zbl 0050.00201
[11] Valtonen, M.; Karttunen, H., The three-Body problem (2006), Cambridge University Press · Zbl 1093.70001
[12] Portegies Zwart, S. F.; Boekholt, T. C., Numerical verification of the microscopic time reversibility of newton’s equations of motion: fighting exponential divergence, Commun Nonlinear Sci Numer Simul, 61, 160-166 (2018)
[13] Barnes, J.; Hut, P., A hierarchical o(nlogn) force-calculation algorithm, Nat, 324, 446-449 (1986)
[14] Fujii, M.; Iwasawa, M.; Funato, Y.; Makino, J., BRIDGE: a direct-tree hybrid n-body algorithm for fully self-consistent simulations of star clusters and their parent galaxies, Publ Astr Soc Jpn, 59, 1095 (2007)
[15] Wisdom, J.; Holman, M., Symplectic maps for the n-body problem, AJ, 102, 1528-1538 (1991)
[16] Makino, J.; Aarseth, S. J., On a hermite integrator with Ahmad-Cohen scheme for gravitational many-body problems, Publ Astr Soc Jpn, 44, 141-151 (1992)
[17] Mikkola, S.; Aarseth, S. J., An efficient integration method for binaries in n-body simulations, New Astron, 3, 309-320 (1998)
[18] Iwasawa, M.; Portegies Zwart, S.; Makino, J., GPU-enabled particle-particle particle-tree scheme for simulating dense stellar cluster system, Comput Astrophys Cosmol, 2, 6 (2015)
[19] Bédorf, J.; Portegies Zwart, S., The effect of many minor mergers on the size growth of compact quiescent galaxies, MNRAS, 431, 767-780 (2013)
[20] Pp.97-104
[21] Murray C.D., Dermott S.F.. Solar system dynamics. 1999. Murray, C. D., Dermott, S. F. · Zbl 0957.70002
[22] Pp. 54-65
[23] Bender, M.; Heenen, P. H.; Reinhard, P. G., Self-consistent mean-field models for nuclear structure, Rev Mod Phys, 75, 1, 121-180 (2003)
[24] Meiron, Y.; Li, B.; Holley-Bockelmann, K.; Spurzem, R., Expansion techniques for collisionless stellar dynamical simulations, ApJ, 792, 98 (2014)
[25] Dehnen, W., A fast multipole method for stellar dynamics, Comput Astrophys Cosmol, 1, 1 (2014)
[26] Milgrom, M., A modification of the newtonian dynamics as a possible alternative to the hidden mass hypothesis, ApJ, 270, 365-370 (1983)
[27] Will, C. M., Incorporating post-newtonian effects in n-body dynamics, Phys Rev D, 89, 4, 044043 (2014)
[28] Duez, M. D.; Zlochower, Y., Numerical relativity of compact binaries in the 21st century, Rep Prog Phys, 82, 1, 016902 (2019)
[29] Spitzer, L. J.; Hart, M. H., Random gravitational encounters and the evolution of spherical systems. ii. models, ApJ, 166, 483 (1971)
[30] Suriano, S. S.; Li, Z. Y.; Krasnopolsky, R.; Suzuki, T. K.; Shang, H., The formation of rings and gaps in wind-launching non-ideal MHD discs: three-dimensional simulations, MNRAS, 484, 107-124 (2019)
[31] Vol. 31
[32] Yoshida, H., Construction of higher order symplectic integrators, Phys Lett A, 150, 262-268 (1990)
[33] Sofroniou, M.; Spaletta, G., Derivation of symmetric composition constants for symmetric integrators, Optim Methods Softw, 20, 4-5, 597-613 (2005) · Zbl 1082.65070
[34] Dehnen, W., A hierarchical \(\mathcal{O} ( n )\) force calculation algorithm, J Comput Phys, 179, 27-42 (2002) · Zbl 1130.85303
[35] Minchev, I.; Famaey, B., A new mechanism for radial migration in galactic disks: spiral-bar resonance overlap, ApJ, 722, 112-121 (2010)
[36] Martínez-Barbosa, C., The evolution of the sun’s birth cluster and the search for the solar siblings with gaia, MNRAS, 457, 1062-1075 (2016)
[37] Pfenniger, D.; Friedli, D., Computational issues connected with 3d n-body simulations, aap, 270, 561-572 (1993)
[38] Rubincam, D. P., Radiative spin-up and spin-down of small asteroids, Icarus, 148, 2-11 (2000)
[39] Vokrouhlický D., Bottke W.F., Chesley S.R., Scheeres D.J., Statler T.S.. The yarkovsky and YORP effects. 2015. Michel P, DeMeo F.E., Bottke W.F., 509-531.
[40] Portegies Zwart, S.; McMillan, S., Astrophysical Recipes; The art of AMUSE (2018)
[41] Hellström, C.; Mikkola, S., Explicit algorithmic regularization in the few-body problem for velocity-dependent perturbations, Celestial Mech Dyn Astron, 106, 143-156 (2010) · Zbl 1223.70056
[42] Iwasawa, M.; Oshino, S.; Fujii, M. S.; Hori, Y., PENTACLE: Parallelized particle-particle particle-tree code for planet formation, Publ Astr Soc Jpn, 69, 5, 81 (2017)
[43] Hozumi, S.; Iwasawa, M.; Nitadori, K., A mean-field approach to simulating the merging of collisionless stellar systems using a particle-based method, ApJ, 875, 1, 20 (2019)
[44] Portegies Zwart, S.; McMillan, S. L.W.; van Elteren, E.; Pelupessy, I.; de Vries, N., Multi-physics simulations using a hierarchical interchangeable software interface, Comput Phys Commun, 183, 456-468 (2013)
[45] Pelupessy, F. I., The astrophysical multipurpose software environment, A&A, 557, A84 (2013)
[46] Pelupessy, I., The oceanographic multipurpose software environment, Geosci Model Dev Discuss, 2016, 1-36 (2016)
[47] Portegies Zwart, S.; Bédorf, J., Using GPUs to enable simulation with computational gravitational dynamics in astrophysics, Computer, 48, 11, 50-58 (2015)
[48] Portegies Zwart, S., Computational astrophysics for the future, Science, 361, 6406, 979-980 (2018) · Zbl 1416.85001
[49] Plummer, H. C., On the problem of distribution in globular star clusters, MNRAS, 71, 460-470 (1911)
[50] Sharma, S.; Bland-Hawthorn, J.; Johnston, K. V.; Binney, J., Galaxia: a code to generate a synthetic survey of the milky way (2011), Astrophysics Source Code Library
[51] Pelupessy, F. I.; Portegies Zwart, S., The evolution of embedded star clusters, MNRAS, 420, 1503-1517 (2012)
[52] Vol. 267, p. 233
[53] Boekholt, T.; Portegies Zwart, S., On the reliability of n-body simulations, Comput Astrophys Cosmol, 2, 2 (2015)
[54] Verlet, L., Computer “experiments” on classical fluids. i. thermodynamical properties of lennard-jones molecules, Phys Rev, 159, 1, 98-103 (1967)
[55] King, I. R., The structure of star clusters. iii. some simple dvriamical models, AJ, 71, 64-75 (1966)
[56] Barnes, J. E., Gravitational softening as a smoothing operation, MNRAS, 425, 2, 1104-1120 (2012)
[57] Portegies Zwart, S. F.; Boekholt, T. C.N., Numerical verification of the microscopic time reversibility of newton’s equations of motion: fighting exponential divergence, Commun Nonlinear Sci NumerSimul, 61, 160-166 (2018)
[58] 1987, 191 p.
[59] McMillan, S. L.W.; Portegies Zwart, S. F., The fate of star clusters near the galactic center. i. analytic considerations, ApJ, 596, 314-322 (2003)
[60] Spinnato, P. F.; Fellhauer, M.; Portegies Zwart, S. F., The efficiency of the spiral-in of a black hole to the galactic centre, MNRAS, 344, 22-32 (2003)
[61] Allen, C.; Santillan, A., An improved model of the galactic mass distribution for orbit computations, Rev Mex Astron Astrofis, 22, 255-263 (1991)
[62] Ferrers, N. M., Pure Appl Math, 14, 1 (1877)
[63] Antoja, T., Constraints on the galactic bar from the hercules stream as traced with RAVE across the galaxy, A&A, 563, A60 (2014)
[64] Martínez-Barbosa, C. A.; Brown, A. G.A.; Portegies Zwart, S., Radial migration of the sun in the milky way: a statistical study, MNRAS, 446, 823-841 (2015)
[65] Portegies Zwart, S.; Boekholt, T., On the minimal accuracy required for simulating self-gravitating systems by means of direct n-body methods, ApJL, 785, L3 (2014)
[66] van Elteren, A.; Portegies Zwart, S.; Pelupessy, I.; Cai, M. X.; McMillan, S. L.W., Survivability of planetary systems in young and dense star clusters, A&A, 624, A120 (2019)
[67] Hamers, A. S.; Portegies Zwart, S. F.; Merritt, D., Relativistic dynamics of stars near a supermassive black hole, MNRAS, 443, 355-387 (2014)
[68] Kokubo, E.; Ida, S., Oligarchic growth of protoplanets, Icarus, 131, 171-178 (1998)
[69] Pelupessy, F. I.; Jänes, J.; Portegies Zwart, S., N-Body integrators with individual time steps from hierarchical splitting, New Astron, 17, 711-719 (2012)
[70] Portegies Zwart, S., AMUSE: astrophysical multipurpose software environment (2011), Astrophysics Source Code Library
[71] Portegies Zwart S., et al. AMUSE: the astrophysical multipurpose software environment. 2018b.
[72] Bovy, J., galpy: galactic dynamics package (2014), Astrophysics Source Code Library
[73] Vol. 45, p. 303.01
[74] Hunter, J. D., Matplotlib: a 2d graphics environment, Comput Sci Eng, 9, 90-95 (2007)
[75] Vol. 1
[76] van Rossum, G., Extending and embedding the python interpreter, Report CS-R9527 (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.