×

zbMATH — the first resource for mathematics

A Petrov-Galerkin finite element-meshfree formulation for multi-dimensional fractional diffusion equations. (English) Zbl 07262494
Summary: Meshfree methods with arbitrary order smooth approximation are very attractive for accurate numerical modeling of fractional differential equations, especially for multi-dimensional problems. However, the non-local property of fractional derivatives poses considerable difficulty and complexity for the numerical simulations of fractional differential equations and this issue becomes much more severe for meshfree methods due to the rational nature of their shape functions. In order to resolve this issue, a new weak formulation regarding multi-dimensional Riemann-Liouville fractional diffusion equations is introduced through unequally splitting the original fractional derivative of the governing equation into a fractional derivative for the weight function and an integer derivative for the trial function. Accordingly, a Petrov-Galerkin finite element-meshfree method is developed, where smooth reproducing kernel meshfree shape functions are adopted for the trial function approximation to enhance the solution accuracy, and the discretization of weight function is realized by the explicit finite element shape functions with an analytical fractional derivative evaluation to further reduce the computational complexity and improve efficiency. The proposed method enables a direct and efficient employment of meshfree approximation, and also eliminates the undesirable singular integration problem arising in the fractional derivative computation of meshfree shape functions. A nonlinear extension of the proposed method to the fractional Allen-Cahn equation is presented as well. The effectiveness of the proposed methodology is consistently demonstrated by numerical results.
MSC:
74 Mechanics of deformable solids
Software:
FODE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Miller, KS; Ross, B., An introduction to the fractional calculus and differential equations (1993), Hoboken: Wiley, Hoboken
[2] Podlubny, I., Fractional differential equations (1999), Cambridge: Academic Press, Cambridge · Zbl 0918.34010
[3] Kilbas, AA; Srivastava, HM; Trujillo, JJ, Theory and applications of fractional differential equations (2006), Amsterdam: Elsevier, Amsterdam
[4] Yang, X.; Machado, JT, A new fractional operator of variable order: application in the description of anomalous diffusion, Physica A, 481, 276-283 (2017)
[5] Zhang, X.; Liu, L.; Wu, Y.; Wiwatanapataphee, B., Nontrivial solutions for a fractional advection dispersion equation in anomalous diffusion, Appl Math Lett, 66, 1-8 (2017) · Zbl 1364.35429
[6] Weron, A.; Janczura, J.; Boryczka, E.; Sungkaworn, T.; Calebiro, D., Statistical testing approach for fractional anomalous diffusion classification, Phys Rev E, 99, 042149 (2019)
[7] Chang, A.; Sun, H., Time-space fractional derivative models for CO_2 transport in heterogeneous media, Fract Calc Appl Anal, 21, 151-173 (2018) · Zbl 1439.35522
[8] Obembe, AD; Hossain, ME; Abu-Khamsin, SA, Variable-order derivative time fractional diffusion model for heterogeneous porous media, J Petrol Sci Eng, 152, 391-405 (2017)
[9] Ezzat, MA, Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer, Physica B, 405, 4188-4194 (2010)
[10] Feng, L.; Liu, F.; Turner, I.; Zheng, L., Novel numerical analysis of multi-term time fractional viscoelastic non-Newtonian fluid models for simulating unsteady MHD Couette flow of a generalized Oldroyd-B fluid, Fract Calc Appl Anal, 21, 1073-1103 (2018) · Zbl 1439.76120
[11] Meerschaert, MM; Tadjeran, C., Finite difference approximations for fractional advection-dispersion flow equations, J Comput Appl Math, 172, 65-77 (2004) · Zbl 1126.76346
[12] Lin, Y.; Xu, CJ, Finite difference/spectral approximations for the time-fractional diffusion equation, J Comput Phys, 225, 1533-1552 (2007) · Zbl 1126.65121
[13] Alikhanov, AA, A new difference scheme for the time fractional diffusion equation, J Comput Phys, 280, 424-438 (2015) · Zbl 1349.65261
[14] Guo, X.; Li, Y.; Wang, H., A fourth-order scheme for space fractional diffusion equations, J Comput Phys, 373, 410-424 (2018) · Zbl 1416.65267
[15] Duo, S.; Wyk, HW; Zhang, Y., A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem, J Comput Phys, 355, 233-252 (2018) · Zbl 1380.65323
[16] Tang, S.; Ying, Y.; Lian, Y.; Lin, S.; Yang, Y.; Wagner, GJ; Liu, WK, Differential operator multiplication method for fractional differential equations, Comput Mech, 58, 879-888 (2016) · Zbl 1400.34013
[17] Jia, J.; Wang, H., A fast finite volume method for conservative space-fractional diffusion equations in convex domains, J Comput Phys, 310, 63-84 (2016) · Zbl 1349.65562
[18] Simmons, A.; Yang, Q.; Moroney, T., A finite volume method for two-sided fractional diffusion equations on non-uniform meshes, J Comput Phys, 335, 747-759 (2017) · Zbl 1383.65101
[19] Li, J.; Liu, F.; Feng, L.; Turner, I., A novel finite volume method for the Riesz space distributed-order advection-diffusion equation, Appl Math Model, 46, 536-553 (2017) · Zbl 1443.65162
[20] Deng, W., Finite element method for the space and time fractional Fokker-Planck equation, SIAM J Numer Anal, 47, 204-226 (2008) · Zbl 1416.65344
[21] Zhao, Y.; Zhang, Y.; Shi, D.; Liu, F.; Turner, I., Superconvergence analysis of nonconforming finite element method for two-dimensional time fractional diffusion equations, Appl Math Lett, 59, 38-47 (2016) · Zbl 1382.65334
[22] Lian, Y.; Ying, Y.; Tang, S.; Lin, S.; Wagner, GJ; Liu, WK, A Petrov-Galerkin finite element method for the fractional advection-diffusion equation, Comput Methods Appl Mech Eng, 309, 388-410 (2016) · Zbl 1439.65090
[23] Luan, S.; Lian, Y.; Ying, Y.; Tang, S.; Wagner, GJ; Liu, WK, An enriched finite element method to fractional advection-diffusion equation, Comput Mech, 60, 181-201 (2017) · Zbl 1429.65171
[24] Lin, Z.; Wang, D., A finite element formulation preserving symmetric and banded diffusion stiffness matrix characteristics for fractional differential equations, Comput Mech, 62, 185-211 (2018) · Zbl 1446.35250
[25] Xu, Q.; Hesthaven, JS, Stable multi-domain spectral penalty methods for fractional partial differential equations, J Comput Phys, 257, 241-258 (2014) · Zbl 1349.35414
[26] Zayernouri, M.; Ainsworth, M.; Karniadakis, GE, A unified Petrov-Galerkin spectral method for fractional PDEs, Comput Methods Appl Mech Eng, 283, 1545-1569 (2015) · Zbl 1425.65127
[27] Song, F.; Xu, CJ; Karniadakis, GE, A fractional phase-field model for two-phase flows with tunable sharpness: algorithms and simulations, Comput Methods Appl Mech Eng, 305, 376-404 (2016) · Zbl 1423.76102
[28] Mao, Z.; Shen, J., Hermite spectral methods for fractional PDEs in unbounded domains, SIAM J Sci Comput, 39, A1928-A1950 (2017) · Zbl 1373.65075
[29] Wang, J.; Xiao, A., Conservative Fourier spectral method and numerical investigation of space fractional Klein-Gordon-Schrödinger equations, Appl Math Comput, 350, 348-365 (2019) · Zbl 1429.65254
[30] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless methods: an overview and recent developments, Comput Methods Appl Mech Eng, 139, 3-47 (1996) · Zbl 0891.73075
[31] Liu, WK; Chen, Y.; Jun, S.; Chen, JS; Belytschko, T.; Pan, C.; Uras, RA; Chang, CT, Overview and applications of the reproducing kernel particle methods, Arch Comput Methods Eng, 3, 3-80 (1996)
[32] Atluri, SN; Shen, S., The meshless local Petrov-Galerkin (MLPG) method (2002), Henderson: Tech Science, Henderson · Zbl 1012.65116
[33] Babuška, I.; Banerjee, U.; Osborn, JE, Survey of meshless and generalized finite element methods: a unified approach, Acta Numer, 12, 1-125 (2003) · Zbl 1048.65105
[34] Li, S.; Liu, WK, Meshfree particle methods (2004), Berlin: Springer, Berlin
[35] Zhang, X.; Liu, Y., Meshless methods (2004), Beijing: Tsinghua University Press & Springer, Beijing
[36] Nguyen, VP; Rabczuk, T.; Bordas, S.; Duflot, M., Meshless methods: a review and computer implementation aspects, Math Comput Simul, 79, 763-813 (2008) · Zbl 1152.74055
[37] Liu, GR, Meshfree methods: moving beyond the finite element method (2009), Boca Raton: CRC Press, Boca Raton
[38] Chen, JS; Hillman, M.; Chi, SW, Meshfree methods: progress made after 20 years, J Eng Mech ASCE, 143, 04017001 (2017)
[39] Wang, D.; Wu, J., An inherently consistent reproducing kernel gradient smoothing framework toward efficient Galerkin meshfree formulation with explicit quadrature, Comput Methods Appl Mech Eng, 349, 628-672 (2019) · Zbl 1441.74278
[40] Zhuang, P.; Gu, YT; Liu, F.; Turner, I.; Yarlagadda, PK, Time-dependent fractional advection-diffusion equations by an implicit MLS meshless method, Int J Numer Methods Eng, 88, 1346-1362 (2011) · Zbl 1242.76262
[41] Liu, Q.; Gu, YT; Zhuang, P.; Liu, F.; Nie, Y., An implicit RBF meshless approach for time fractional diffusion equations, Comput Mech, 48, 1-12 (2011) · Zbl 1377.76025
[42] Mohebbi, A.; Abbaszadeh, M.; Dehghan, M., The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics, Eng Anal Bound Elem, 37, 475-485 (2013) · Zbl 1352.65397
[43] Lian, Y.; Gregory, JW; Liu, WK; Griebel, M.; Schweitzer, M., A meshfree method for the fractional advection-diffusion equation, Meshfree methods for partial differential equations VIII, 53-66 (2017), Cham: Springer, Cham
[44] Ying, Y.; Lian, Y.; Tang, S.; Liu, WK, Enriched reproducing kernel particle method for fractional advection-diffusion equation, Acta Mech Sin, 34, 515-527 (2018) · Zbl 1404.65070
[45] Lin, Z.; Liu, F.; Wang, D.; Gu, YT, Reproducing kernel particle method for two-dimensional time-space fractional diffusion equations in irregular domains, Eng Anal Bound Elem, 97, 131-143 (2018) · Zbl 1404.65095
[46] Tayebi, A.; Shekari, Y.; Heydari, MH, A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation, J Comput Phys, 340, 655-669 (2017) · Zbl 1380.65185
[47] Shekari, Y.; Tayebi, A.; Heydari, MH, A meshfree approach for solving 2D variable-order fractional nonlinear diffusion-wave equation, Comput Methods Appl Mech Eng, 350, 154-168 (2019) · Zbl 1441.65079
[48] Hussain, M.; Haq, S.; Ghafoor, A., Meshless RBFs method for numerical solutions of two-dimensional high order fractional Sobolev equations, Comput Math Appl, 79, 802-816 (2020)
[49] Nayroles, B.; Touzot, G.; Villon, P., Generalizing the finite element method: diffuse approximation and diffuse elements, Comput Mech, 10, 307-318 (1992) · Zbl 0764.65068
[50] Belytschko, T.; Lu, YY; Gu, L., Element-free Galerkin methods, Int J Numer Methods Eng, 37, 229-256 (1994) · Zbl 0796.73077
[51] Liu, WK; Jun, S.; Zhang, YF, Reproducing kernel particle methods, Int J Numer Methods Fluids, 20, 1081-1106 (1995) · Zbl 0881.76072
[52] Chen, JS; Pan, C.; Wu, CT; Liu, WK, Reproducing kernel particle methods for large deformation analysis of non-linear structures, Comput Methods Appl Mech Eng, 139, 195-227 (1996)
[53] Wu, CT; Park, CK; Chen, JS, A generalized approximation for the meshfree analysis of solids, Int J Numer Methods Eng, 85, 693-722 (2011) · Zbl 1217.74150
[54] Wang, D.; Chen, P., Quasi-convex reproducing kernel meshfree method, Comput Mech, 54, 689-709 (2014) · Zbl 1311.65152
[55] Yin, B.; Liu, Y.; Li, H.; He, S., Fast algorithm based on TT-M FE system for space fractional Allen-Cahn equations with smooth and non-smooth solutions, J Comput Phys, 379, 351-372 (2019)
[56] Zheng, L.; Zhang, X., Modeling and analysis of modern fluid problems (2017), Cambridge: Academic Press, Cambridge
[57] Roop, JP, Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R^2, J Comput Appl Math, 193, 243-268 (2006) · Zbl 1092.65122
[58] Teodoro, GS; Machado, JT; Oliveira, EC, A review of definitions of fractional derivatives and other operators, J Comput Phys, 388, 195-208 (2019)
[59] Samko, SG; Kilbas, AA; Marichev, OI, Fractional integrals and derivatives: theory and applications (1993), London: Gordon and Breach Science Publishers, London
[60] Lions, JL; Magenes, E., Non-homogeneous boundary value problems and applications (1972), Berlin: Springer, Berlin
[61] Li, X.; Xu, CJ, A space-time spectral method for the time fractional diffusion equation, SIAM J Numer Anal, 47, 2108-2131 (2009) · Zbl 1193.35243
[62] Zhao, Y.; Bu, WP; Zhao, X.; Tang, YF, Galerkin finite element method for two-dimensional space and time fractional Bloch-Torrey equation, J Comput Phys, 350, 117-135 (2017) · Zbl 1380.65294
[63] Feng, L.; Liu, F.; Turner, I., Finite difference/finite element method for a novel 2D multi-term time-fractional mixed sub-diffusion and diffusion-wave equation on convex domains, Commun Nonlinear Sci Numer Simul, 70, 354-371 (2019)
[64] Shen, J.; Tang, T.; Wang, L., Spectral methods: algorithms, analysis and applications (2011), Berlin: Springer, Berlin
[65] Li, X.; Xu, CJ, Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation, Commun Comput Phys, 8, 1016-1051 (2010) · Zbl 1364.35424
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.