zbMATH — the first resource for mathematics

Model-based vibration control for optical lenses. (English) Zbl 07262552
Summary: This work presents a contribution to the active image stabilization of optical systems, involving model development, control design, and the hardware setup. A laboratory experiment is built, which demonstrates the vibration sensitivity of a mechanical-optical system. In order to stabilize the undesired image motion actively, a model-based compensation of the image vibration is developed, realized and tested. Beside a linear actuator motion system, a force sensor system and a position sensor system are introduced and analyzed. In particular, various low-cost hardware components of the Arduino platform are used, which support the deployment of the controller software based on Matlab-Simulink. The remaining image motion is measured with a high-speed vision sensor system and the performance of the overall system is assessed.
70E55 Dynamics of multibody systems
Full Text: DOI
[1] Butler, H., Position control in lithographic equipment, applications of control, IEEE Control Syst., 31, 5, 28-47 (2011) · Zbl 1395.93412
[2] Wengert, N.; Eberhard, P., Vibration modification in an opto-dynamical test setup for suppressing aberrations, Proceedings of the 11th ICOVP (2013)
[3] Seifried, R., Dynamics of Underactuated Multibody Systems - Modeling, Control and Optimal Design (2014), Berlin: Springer, Berlin · Zbl 1283.70001
[4] Wengert, N.; Nefzi, M.; Eberhard, P.; Geuppert, B., Dynamics in lithographic projection objectives, Multibody Syst. Dyn., 30, 2, 233-245 (2013)
[5] Barber, R.; Horra, M.; Crespo, J., Control practices using simulink with Arduino as low cost hardware, IFAC Proceedings Volumes, 250-255 (2013)
[6] Reguera, P.; Garcia, D.; Dominguez, M.; Prada, M.; Alonso, S., A low-cost open source hardware in control education. Case study: Arduino-feedback MS-150, IFAC-PapersOnLine, 117-122 (2015)
[7] Arduino: Webpage – the open-source electronic prototyping platform. www.arduino.cc, Accessed February 15, 2018
[8] Wengert, N.: Gekoppelte dynamisch-optische Simulation von Hochleistungsobjektiven. No. 40 in Dissertation, Schriften aus dem Institut für Technische und Numerische Mechanik der Universität Stuttgart. Shaker Verlag, Aachen (2015) (in German)
[9] Schiehlen, W.; Eberhard, P., Applied Dynamics (2014), Heidelberg: Springer, Heidelberg · Zbl 1306.70001
[10] Störkle, J.: Dynamic Simulation and Control of Optical Systems. No. 58 in Dissertation, Schriften aus dem Institut für Technische und Numerische Mechanik der Universität Stuttgart. Shaker Verlag, Aachen (2018). Shaker Verlag
[11] Teske, D.: Erweiterung des Experiments “Objektivschwingungen” durch eine dynamisch-optische Regelung. Student Thesis STUD-446, Institut für Technische und Numerische Mechanik der Universität Stuttgart (2016) (in German)
[12] Liang, S.: Dynamisch-optische Zustandsrekonstruktion am Beispiel des Experiments “Objektivschwingungen”. Student Thesis STUD-475, Institut für Technische und Numerische Mechanik der Universität Stuttgart (2017) (in German)
[13] West, P.: High Speed, Real-Time Machine Vision. Technical Report, Automated Vision Systems Inc. and CyberOptics - Imagenation (2001)
[14] PI: Technical Note for the V-522, V-524, V-528 PIMag^® Voice Coil Linear Stages (V522T0002), Physik Instrumente (PI) GmbH & Co. KG (2016)
[15] PI: User Manual for the C-413PIMag^® Controller (MS224E), Physik Instrumente (PI) GmbH & Co. KG (2015)
[16] Young, P.; Jakeman, A., Refined instrumental variable methods of recursive time-series analysis Part III. Extensions, Int. J. Control, 31, 4, 741-764 (1980) · Zbl 0468.93089
[17] Hoagg, J. B.; Bernstein, D. S., Nonminimum-phase zeros – much to do about nothing – classical control – revisited part II, IEEE Control Syst., 27, 3, 45-57 (2007)
[18] PCB: Technical Note for the Four-Channel ICP Sensor Signal Conditioner (Model 482C15), PCB Piezotronics, Inc. (2016)
[19] MT: Technical Note for the Linear IC Operational Amplifier MCP602-I/P, Microchip Technology (MT) Inc. (2007)
[20] AMS: Technical Note for the AS5304/AS5306 - Integrated Hall ICs for Linear and Off-Axis Rotary Motion Detection (Revision 2.0), AMS AG (2017)
[21] Ramsden, E., Hall-Effect Sensors: Theory and Application (2011), Oxford: Elsevier, Oxford
[22] AMS: Technical Note for the AS5306 Magnetic Multipole Strip, MS12-15 (Revision 2.0), AMS AG (2014)
[23] MT: Technical Note for the MCP4911-10-Bit Voltage Output Digital-to-Analog Converter with SPI Interface, Microchip Technology (MT) Inc. (2010)
[24] Mathworks: Simulink Support Package for Arduino Hardware. www.mathworks.com/hardware-support/arduino-simulink.html. Accessed February 15, 2018
[25] Medium: Webpage: Medium - Arduino Simulink S-function tutorial. medium.com, Published March 13, 2017. Accessed February 19, 2018
[26] Basler: Technical Note for Basler ace - User’s Manual for GigE Cameras (AW00089327), Basler AG (2017)
[27] Basler: Technical Note for Basler Cameras - Installation and Setup Guide for Cameras Used with Basler pylon for Windows (AW00061109), Basler AG (2015)
[28] Kalman, R. E., A new approach to linear filtering and prediction problems, J. Basic Eng., 82, 35-45 (1960)
[29] Föllinger, O., Regelungstechnik (1992), Heidelberg: Hüthig Buch Verlag, Heidelberg
[30] Lunze, J., Regelungstechnik 2, Mehrgrößensysteme, Digitale Regelung (2010), Berlin: Springer, Berlin
[31] Deliyannis, T.; Sun, Y.; Fidler, J., Continuous-Time Active Filter Design. Electronic Engineering Systems (1998), Boca Raton: CRC Press, Boca Raton
[32] Shampine, L. F.; Reichelt, M. W., The MATLAB ODE Suite, SIAM J. Sci. Comput., 18, 1, 1-22 (1997) · Zbl 0868.65040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.