zbMATH — the first resource for mathematics

Modularized design for cooperative control of cyber-physical systems with disturbances and general cooperative targets. (English) Zbl 1450.93035
Summary: In this work, cyber-physical systems (CPSs) are described by networked heterogeneous linear systems and a modularized cooperative control architecture is developed for CPSs with general cooperative targets and external disturbances. The proposed control architecture is composed of low- and high-level controls. The low-level control is to make input-output pairs of the resulting closed-loop systems become passivity-short and the high-level distributed control is to achieve cooperative targets. Different from the current state-of-the-art, \(a)\) the presented controls can be modularized, and under the controls, each follower can track the reference trajectory generated by linear dynamical systems while rejecting external disturbances; \(b)\) with the aid of regulator equations, the constraint on the resulting closed-loop system matrices containing some specific poles can be removed by the new low-level control. The effectiveness of the proposed method is verified by a numerical example.
93C83 Control/observation systems involving computers (process control, etc.)
93B70 Networked control
93B51 Design techniques (robust design, computer-aided design, etc.)
93C05 Linear systems in control theory
Full Text: DOI
[1] Jin, X.; Haddad, W. M.; Yucelen, T., An adaptive control architecture for mitigating sensor and actuator attacks in cyber-physical systems, IEEE Trans. Autom. Control, 62, 11, 6058-6064 (2017) · Zbl 1390.93440
[2] Ding, D.; Han, Q.; Wang, Z.; Ge, X., A survey on model-based distributed control and filtering for industrial cyber-physical systems, IEEE Trans. Ind. Inform., 15, 5, 2483-2499 (2019)
[3] Wu, G.; Sun, J.; Chen, J., Optimal data injection attacks in cyber-physical systems, IEEE Trans. Cybern., 48, 12, 3302-3312 (2018)
[4] online, DOI:10.1016/j.jfranklin.2019.02.010
[5] Yuan, Y.; Zhang, P.; Guo, L.; Yang, H., Towards quantifying the impact of randomly occurred attacks on a class of networked control systems, J. Frankl. Inst., 354, 12, 4966-4988 (2017) · Zbl 1367.93726
[6] online, DOI: 10.1109/TCSII.2018.2881984
[7] Huang, X.; Dong, J., Reliable control policy of cyber-physical systems against a class of frequency-constrained sensor and actuator attacks, IEEE Trans. Cybern., 48, 12, 3432-3439 (2018)
[8] online, DOI:10.1016/j.jfranklin.2018.01.048
[9] Yang, J.; Zhou, C.; Yang, S.; Xu, H.; Hu, B., Anomaly detection based on zone partition for security protection of industrial cyber-physical systems, IEEE Trans. Ind. Electron., 65, 5, 4257-4267 (2018)
[10] Zhang, Y.; Shi, P.; Nguang, S. K., Observer-based finite-time H_∞ control for discrete singular stochastic systems, Appl. Math. Lett., 38, 115-121 (2014) · Zbl 1314.93016
[11] Zhang, Y.; Shi, P.; Nguang, S. K.; Karimi, H. R., Observer-based finite-time fuzzy H_∞ control for discrete-time systems with stochastic jumps and time-delays, Signal Process., 97, 252-261 (2014)
[12] Du, C.; Li, F.; Yang, C., An improved homogeneous polynomial approach for adaptive sliding-mode control of Markov jump systems with actuator faults, IEEE Trans. Autom. Control, 65, 3, 955-969 (2020)
[13] Li, F.; Du, C.; Yang, C.; Wu, L.; Gui, W., Finite-time asynchronous sliding mode control for Markovian jump systems, Automatica, 109, 108503 (2019) · Zbl 1429.93050
[14] Zhang, Y.; Shi, P.; Agarwal, R. K.; Shi, Y., Event-based dissipative analysis for discrete time-delay singular jump neural networks, IEEE Trans. Neural Netw. Learn.Syst., 31, 4, 1232-1241 (2020)
[15] Li, F.; Li, X.; Zhang, X.; Yang, C., Asynchronous filtering for delayed Markovian jump systems via homogeneous polynomial approach, IEEE Trans. Autom. Control, 65, 5, 2163-2170 (2020)
[16] Vala, C. K.; French, M.; Acharyya, A.; Al-Hashimi, B. M., Low-complexity architecture for cyber-physical systems model identification, IEEE Trans. Circt. Syst. II, 66, 8, 1416-1420 (2019)
[17] Gusrialdi, A.; Qu, Z.; Simaan, M. A., Competitive interaction design of cooperative systems against attacks, IEEE Trans. Autom. Control, 63, 9, 3159-3166 (2018) · Zbl 1423.93267
[18] Arcak, M., Passivity as a design tool for group coordination, IEEE Trans. Autom. Control, 52, 8, 1380-1390 (2007) · Zbl 1366.93563
[19] Qu, Z.; Wang, J.; Hull, R. A., Cooperative control of dynamical systems with application to autonomous vehicles, IEEE Trans. Autom. Control, 53, 4, 894-911 (2008) · Zbl 1367.93076
[20] Lin, Z.; Broucke, M.; Francis, B., Local control strategies for groups of mobile autonomous agents, IEEE Trans. Autom. Control, 49, 4, 622-629 (2004) · Zbl 1365.93208
[21] online, DOI: 10.1109/TCSII.2018.2882538
[22] Liu, Y.; Xin, H.; Qu, Z.; Gan, D., An attack-resilient cooperative control strategy of multiple distributed generators in distribution networks, IEEE Trans. Smart Grid, 7, 6, 2923-2932 (2016)
[23] Huang, X.; Dong, J., Reliable leader-to-follower formation control of multiagent systems under communication quantization and attacks, IEEE Trans. Syst. Man Cybern., 50, 1, 89-99 (2020)
[24] Pasqualetti, F.; Bicchi, A.; Bullo, F., Consensus computation in unreliable networks: asystem theoretic approach, IEEE Trans. Autom. Control, 57, 1, 90-104 (2012) · Zbl 1369.93042
[25] Olfati-Saber, R.; Fax, J. A.; Murray, R. M., Consensus and cooperation in networked multi-agent systems, Proc. IEEE, 95, 1, 215-233 (2007) · Zbl 1376.68138
[26] Shi, P.; Shen, Q. K., Observer-based leader-following consensus of uncertain nonlinear multi-agent systems, Int. J. Robust Nonlinear Control, 27, 17, 3794-3811 (2017) · Zbl 1386.93018
[27] Gao, W.; Jiang, Z.; Lewis, F. L.; Wang, Y., Leader-to-formation stability of multiagent systems: an adaptive optimal control approach, IEEE Trans. Autom. Control, 63, 10, 3581-3587 (2018) · Zbl 1423.93015
[28] Dong, X.; Hu, G., Time-varying formation control for general linear multi-agent systems with switching directed topologies, Automatica, 73, 47-55 (2016) · Zbl 1372.93012
[29] Maghenem, M.; Loría, A.; Panteley, E., A cascades approach to formation-tracking stabilization of force-controlled autonomous vehicles, IEEE Trans. Autom. Control, 63, 8, 2662-2669 (2018) · Zbl 1423.93276
[30] Su, Y.; Huang, J., Cooperative output regulation of linear multi-agent systems, IEEE Trans. Autom. Control, 57, 4, 1062-1066 (2012) · Zbl 1369.93051
[31] Leitao, P.; Colombo, A. W.; Karnouskos, S., Industrial automation based on cyber-physical systems technologies: prototype implementations and challenges, Comput. Ind., 81, 11-25 (2016)
[32] Jirkovský, V.; Obitko, M.; Kadera, P.; Mařík, V., Toward plug & play cyber-physical system components, IEEE Trans. Ind. Inform., 14, 6, 2803-2811 (2018)
[33] Sadjadi, H.; Mohareri, O.; Al-Jarrah, M. A.; Assaleh, K., Design and implementation of hexbot: a modular self-reconfigurable robotic system, J. Frankl. Inst., 349, 7, 2281-2293 (2012) · Zbl 1287.93056
[34] Qu, Z.; Simaan, M. A., Modularized design for cooperative control and plug-and-play operation of networked heterogeneous systems, Automatica, 50, 9, 2405-2414 (2014) · Zbl 1297.93016
[35] Chen, G.; Song, Y.-D., Robust fault-tolerant cooperative control of multi-agent systems: a constructive design method, J. Frankl. Inst., 352, 10, 4045-4066 (2015) · Zbl 1395.93033
[36] Deng, C.; Yang, G.-H., Distributed adaptive fault-tolerant control approach to cooperative output regulation for linear multi-agent systems, Automatica, 103, 62-68 (2019) · Zbl 1415.93141
[37] Slotine, J.-J.; Li, W., Applied Nonlinear Control (1991), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ, USA
[38] Hanke, C. R.; Nordwall, D. R., The Simulation of a Jumbo Jet Transport Aircraft, II (1970), Modelling data NASA and the Boeing Company
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.