Bistability analysis of virus infection models with time delays. (English) Zbl 1451.92303

Summary: Mathematical models with time delays are widely used to analyze the mechanisms of the immune response to virus infections and predict various therapeutic effects. Using the lymphocytic choriomeningitis virus infection model as an example, this work describes an original computational technology for searching the bistable regimes of such models. This technology includes numerical methods for finding all possible steady states at fixed values of parameters, for tracing these states along the parameters and for analyzing their stability.


92D30 Epidemiology
34K10 Boundary value problems for functional-differential equations
Full Text: DOI


[1] D. Angeli; J. E. Ferrell Jr.; E. D. Sontag, Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems, Proc. Natl. Acad. Sci. U.S.A., 101, 1822-1827 (2004)
[2] G. Bocharov; J. Argilaguet; A. Meyerhans, Understanding experimental LCMV infection of mice: The role of mathematical models, J. Immunol. Res., 2015, 1-10 (2015)
[3] G. Bocharov, V. Volpert, B. Ludewig and A. Meyerhans, Mathematical Immunology of Virus Infections, Springer, Cham, 2018. · Zbl 1401.92002
[4] G. A. Bocharov, Modelling the dynamics of LCMV infection in mice: Conventional and exhaustive CTL responses, J. Theor. Biol., 192, 283-308 (1998)
[5] G. A. Bocharov; Yu. M. Nechepurenko; M. Yu. Khristichenko; D. S. Grebennikov, Optimal perturbations of systems with delayed argument for control of dynamics of infectious diseases based on multicomponent actions, Sovrem. Mat. Fundam. Napravl., 63, 392-417 (2017)
[6] G. A. Bocharov; Yu. M. Nechepurenko; M. Yu. Khristichenko; D. S. Grebennikov, Maximum response perturbation-based control of virus infection model with time-delays, Russian J. Num. Anal. Math. Model., 32, 275-291 (2017) · Zbl 1379.92029
[7] G. A. Bocharov; Yu. M. Nechepurenko; M. Yu. Khristichenko; D. S. Grebennikov, Optimal disturbances of bistable time-delay systems modeling virus infections, Doklady Mathrmatics, 98, 313-316 (2018) · Zbl 1401.92175
[8] G. Bocharov; A. Kim; A. Krasovskii; V. Chereshnev; V. Glushenkova; A. Ivanov, An extremal shift method for control of HIV infection dynamics, Russian J. Numer. Anal. Math. Modeling., 30, 11-25 (2015) · Zbl 1319.49062
[9] G. A. Bocharov; G. I. Marchuk, Applied problems of mathematical modeling in immunology, Comput. Math. Math. Phys., 40, 1830-1844 (2000) · Zbl 0997.92021
[10] A. V. Boǐko; Yu. M. Nechepurenko, A technique for the numerical analysis of the riblet effect on temporal stability of plane flows, Computational Mathematics and Mathematical Physics, 50, 1055-1070 (2010) · Zbl 1224.76044
[11] D. Breda, S. Maset and R. Vermiglio, TRACE-DDE: A tool for robust analysis and characteristic equations for delay differential equations, Topics in Time Delay Systems: Analysis, Algorithms and Control. Lecture Notes in Control and Information Sciences, Springer Berlin Heidelberg, Berlin, Heidelberg, (2009), 145-155.
[12] S. M. Ciupe, C. J. Miller and J. E. Forde, A bistable switch in virus dynamics can explain the differences in disease outcome following SIV infections in rhesus macaques, Front. Microbiol., 9 (2018), 1216.
[13] A. Ciurea; P. Klenerman; L. Hunziker; E. Horvath; B. Odermatt; A. F. Ochsenbein; H. Hengartner; R. M. Zinkernagel, Persistence of lymphocytic choriomeningitis virus at very low levels in immune mice, Proc. Natl. Acad. Sci. U.S.A, 96, 11964-11969 (1999)
[14] C. Effenberger, Robust successive computation of eigenpairs for nonlinear eigenvalue problems, SIAM J. Matrix Anal., 34, 1231-1256 (2013) · Zbl 1297.47067
[15] K. Engelborghs; T. Luzyanina; D. Roose, Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL, ACM Trans. Math. Softw., 28, 1-21 (2002) · Zbl 1070.65556
[16] J. E. Ferrell, Bistability, bifurcations, and Waddington’s epigenetic landscape, Curr. Biol., 22, 458-466 (2012)
[17] G. E. Forsythe, M. A. Malcolm and C. B. Moler, Computer Methods for Mathematical Computations, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Englewood Cliffs, 1977. · Zbl 0361.65002
[18] G. H. Golub and C. F. Van Loan, Matrix Computations, Second edition, Johns Hopkins Series in the Mathematical Sciences, 3. Johns Hopkins University Press, Baltimore, MD, 1989. · Zbl 0733.65016
[19] E. Hairer and G. Wanner, Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems, Second edition. Springer Series in Computational Mathematics, 14. Springer-Verlag, Berlin, 1996. · Zbl 0859.65067
[20] H. Hilton, Plane Algebraic Curves, Oxford University Press, London, 1920. · JFM 47.0611.03
[21] D. Kahaner, C. Moler and S. Nash, Numerical Methods and Software, Prentice-Hall, Englewood Cliffs, 1977. · Zbl 0744.65002
[22] G. I. Marchuk, Mathematical Models in Immunology, Optimization Software Inc. Publications Division, New York, 1983. · Zbl 0556.92006
[23] G. I. Marchuk, Mathematical Modelling of Immune Response in Infectious Diseases, Mathematics and its Applications, 395. Kluwer Academic Publishers Group, Dordrecht, 1997.
[24] D. Moskophidis; F. Lechner; H. Pircher; R. M. Zinkernagel, Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells, Nature, 362, 758-761 (1993)
[25] Yu. M. Nechepurenko; M. Yu. Khristichenko, Development and analysis of algorithms for computing optimal disturbances for delay systems, Keldysh Institute Preprints, 120, 1-26 (2018)
[26] D. Roose and R. Szalai, Continuation and bifurcation analysis of delay differential equations, Numerical Continuation Methods for Dynamical Systems: Path Following and Boundary Value Problems, Underst. Complex Syst., Springer, Dordrecht, (2007), 359-399. · Zbl 1132.34001
[27] J. Sieber, K. Engelborghs, T. Luzyanina, G. Samaey and D. Roose, DDE-BIFTOOL Manual: Bifurcation analysis of delay differential equations, arXiv: 1406.7144.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.