zbMATH — the first resource for mathematics

Construction and analysis of explicit adaptive one-step methods for solving stiff problems. (English. Russian original) Zbl 07264981
Comput. Math. Math. Phys. 60, No. 7, 1078-1091 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 7, 1111-1125 (2020).
Summary: The paper considers the construction of adaptive methods based on the explicit Runge-Kutta stages. The coefficients of these methods are adjusted to the problem being solved, using component-wise estimates of the eigenvalues of the Jacobi matrix with the maximum absolute values. Such estimates can be easily obtained at the stages of the explicit method, which practically does not require additional calculations. The effect of computational errors and stiffness of the problem on the stability and accuracy of the numerical solution is studied. The analysis allows one to construct efficient explicit methods that are not inferior to implicit methods in solving many stiff problems. New nested pairs of adaptive methods are proposed, and the results of numerical experiments are presented.
65L04 Numerical methods for stiff equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
Full Text: DOI
[1] Hairer, E.; Wanner, G., Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems (1996), Berlin: Springer-Verlag, Berlin · Zbl 0859.65067
[2] Curtiss, C. F.; Hirschfelder, J. O., Integration of stiff equations, Proc. Nat. Acad. Sci. USA, 38, 235-243 (1952) · Zbl 0046.13602
[3] Lebedev, V. I., Computational Processes and Systems (1991), Moscow: Nauka, Moscow
[4] Verwer, J. G., Explicit Runge-Kutta methods for parabolic partial differential equations, Appl. Numer. Math., 22, 359-379 (1996) · Zbl 0868.65064
[5] Novikov, E. A., Explicit Methods for Stiff Systems (1997), Novosibirsk: Nauka, Novosibirsk · Zbl 0934.65067
[6] Skvortsov, L. M., Explicit stabilized Runge-Kutta methods, Comput. Math. Math. Phys., 51, 1153-1166 (2011) · Zbl 1249.65156
[7] Skvortsov, L. M., Numerical Solution of Ordinary Differential and Differential-Algebraic Equations (2018), Moscow: DMK, Moscow
[8] Skvortsov, L. M., Explicit adaptive Runge-Kutta methods for stiff and oscillation problems, Comput. Math. Math. Phys., 51, 1339-1352 (2011) · Zbl 1249.65155
[9] Skvortsov, L. M., Explicit adaptive Runge-Kutta methods, Math. Models Comput. Simul., 4, 82-91 (2012)
[10] Fowler, M. E.; Warten, R. M., A numerical integration technique for ordinary differential equations with widely separated eigenvalues, IBM J. Res. Dev., 11, 537-543 (1967) · Zbl 0183.18103
[11] Lambert, J. D., Nonlinear methods for stiff systems of ordinary differential equations, Lect. Notes Math., 363, 75-88 (1974)
[12] Wambecq, A., Rational Runge-Kutta methods for solving systems of ordinary differential equations, Computing, 20, 333-342 (1978) · Zbl 0395.65036
[13] Bobkov, V. V., New explicit A-stable methods for the numerical solution of differential equations, Differ. Uravn., 14, 2249-2251 (1978) · Zbl 0404.65045
[14] Zavorin, A. N., Application of nonlinear methods for computing transient processes in electric circuits, Izv. Vyssh. Uchebn. Zaved. Radioelektron., 26, 35-41 (1983)
[15] Skvortsov, L. M., Adaptive methods for numerical integration in problems of dynamical system simulation, J. Comput. Syst. Sci. Int., 38, 573-579 (1999) · Zbl 1071.65540
[16] Skvortsov, L. M., Explicit adaptive methods for numerical solution of stiff systems, Mat. Model., 12, 97-107 (2000) · Zbl 0988.65048
[17] Skvortsov, L. M., Explicit multistep method for the numerical solution of stiff differential equations, Comput. Math. Math. Phys., 47, 915-923 (2007) · Zbl 1292.65077
[18] O. S. Kozlov, L. M. Skvortsov, and V. V. Khodakovskii, Solution of Differential and Differential-Algebraic Equations with the Help of MVTU Software Package (2005). http://model.exponenta.ru/mvtu/20051121.html.
[19] Kozlov, O. S.; Skvortsov, L. M., MVTU software package in scientific research and applied developments, Math. Models Comput. Simul., 8, 358-368 (2016)
[20] Kartashov, B. A.; Shabaev, E. A.; Kozlov, O. S.; Shchekaturov, A. M., Dynamic Modeling Environment SimInTech for Technical Systems (2017), Moscow: DMK, Moscow
[21] Dekker, K.; Verwer, J. G., Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations (1984), Amsterdam: North-Holland, Amsterdam · Zbl 0571.65057
[22] Shampine, L. F.; Reichelt, M. W., The MATLAB ODE suite, SIAM J. Sci. Comput., 18, 1-22 (1997) · Zbl 0868.65040
[23] Bogacki, P.; Shampine, L. F., A 3(2) pair of Runge-Kutta formulas, Appl. Math. Lett., 2, 321-325 (1989) · Zbl 0705.65055
[24] Mazzia, F.; Magherini, C., Test Set for Initial Value Problem Solvers: Release 2.4 (2008), Bari: Dep. Math. Univ., Bari
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.