zbMATH — the first resource for mathematics

Corrigendum to “The saddle-straddle method to test for Wada basins”. (English) Zbl 07265400
Corrigendum to the authors’ paper [ibid. 84, Article ID 105167, 8 p. (2020; Zbl 07261592)].
65 Numerical analysis
37 Dynamical systems and ergodic theory
Full Text: DOI
[1] Yoneyama, K., Theory of continuous sets of points, Tokohu Math J, 11, 43-158 (1917)
[2] Hocking, J. G.; Young, G. S., Topology (1988), Dover: Dover New York · Zbl 0718.55001
[3] Kuratowski, C., Sur les coupures irréductibles du plan, Fundam Math, 6, 130-145 (1924) · JFM 50.0368.08
[4] Sanjuán, M. A.F.; Kennedy, J.; Ott, E.; Yorke, J. A., Indecomposable continua and the characterization of strange sets in nonlinear dynamics, Phys Rev Lett, 78, 1892-1895 (1997)
[5] Kennedy, J.; Yorke, J. A., Basins of wada, Phys D, 51, 213-225 (1991) · Zbl 0746.58054
[6] Nusse, H. E.; Yorke, J. A., Wada basin boundaries and basin cells, Phys D, 90, 242-261 (1996) · Zbl 0886.58072
[7] Nusse, H. E.; Ott, E.; Yorke, J. A., Saddle-node bifurcations on fractal basin boundaries, Phys Rev Lett, 75, 2482-2485 (1995)
[8] Nusse, H. E.; Yorke, J. A., Fractal basin boundaries generated by basin cells and the geometry of mixing chaotic flows, Phys Rev Lett, 84, 626-629 (2000)
[9] Poon, L.; Campos, J.; Ott, E.; Grebogi, C., Wada basin boundaries in chaotic scattering, Int J Bifurcat Chaos, 6, 251-265 (1996) · Zbl 0870.58069
[10] Aguirre, J.; Vallejo, J. C.; Sanjuán, M. A.F., Wada basins and chaotic invariant sets in the Hénon-Heiles system, Phys Rev E, 64, 066208 (2001)
[11] Toroczkai, Z.; Károlyi, G.; Péntek, A.; Tél, T.; Grebogi, C.; Yorke, J. A., Wada dye boundaries in open hydrodynamical flows, Phys A, 239, 235-243 (1997)
[12] Daza, A.; Wagemakers, A.; Sanjuán, M. A.F., Wada property in systems with delay, Commun Nonlinear Sci Numer Simul, 43, 220-226 (2017)
[13] Daza, A.; Wagemakers, A.; Sanjuán, M. A.F.; Yorke, J. A., Testing for basins of wada, Sci Rep, 5, 16579 (2015)
[14] Daza, A.; Wagemakers, A.; Sanjuán, M. A.F., Ascertaining when a basin is wada: the merging method, Sci Rep, 8, 9954 (2018)
[15] Zhang, Y.; Luo, G., Wada bifurcations and partially wada basin boundaries in a two-dimensional cubic map, Phys Lett A, 377, 1274-1281 (2013) · Zbl 1290.37027
[16] Grebogi, C.; Ott, E.; Yorke, J. A.; Nusse, H. E., Fractal basin boundaries with unique dimension, Ann N Y Acad Sci, 497, 117-126 (1987)
[17] Grebogi, C.; Nusse, H. E.; Ott, E.; Yorke, J. A., Basic sets: Sets that determine the dimension of basin boundaries, (Alexander, J. C., Dynamical Systems Lecture Notes in Mathematical, vol. 1342 (1988), Springer: Springer Berlin), 220-250 · Zbl 0674.58031
[18] Battelino, P. M.; Grebogi, C.; Ott, E.; Yorke, J. A.; Yorke, E. D., Multiple coexisting attractors, basin boundaries and basic sets, Phys D, 32, 296-305 (1988) · Zbl 0668.58035
[19] Nusse, H. E.; Yorke, J. A., Dynamics: Numerical Explorations (2012), Springer: Springer New York
[20] Edgar, G., Measure, Topology, and Fractal Geometry (2007), Springer: Springer New York
[21] Friedman, J. H.; Bentley, J. L.; Finkel, R. A., An algorithm for finding best matches in logarithmic expected time, ACM Trans Math Softw, 3, 20-26 (1977)
[22] Aguirre, J.; Viana, R. L.; Sanjuán, M. A.F., Fractal structures in nonlinear dynamics, Rev Mod Phys, 81, 333 (2009)
[23] Daza, A.; Shipley, J. O.; Dolan, S. R.; Sanjuán, M. A.F., Wada structures in a binary black hole system, Phys Rev D, 98, 84050 (2018)
[24] Kantz, H., Quantifying the closeness of fractal measures, Phys Rev E, 49, 5091-5097 (1994)
[25] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical Recipes: The Art of Scientific Computing (2007), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 1132.65001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.