zbMATH — the first resource for mathematics

A Bayesian general linear modeling approach to cortical surface fMRI data analysis. (English) Zbl 1445.62283
Summary: Cortical surface functional magnetic resonance imaging (cs-fMRI) has recently grown in popularity versus traditional volumetric fMRI. In addition to offering better whole-brain visualization, dimension reduction, removal of extraneous tissue types, and improved alignment of cortical areas across subjects, it is also more compatible with common assumptions of Bayesian spatial models. However, as no spatial Bayesian model has been proposed for cs-fMRI data, most analyses continue to employ the classical general linear model (GLM), a “massive univariate” approach. Here, we propose a spatial Bayesian GLM for cs-fMRI, which employs a class of sophisticated spatial processes to model latent activation fields. We make several advances compared with existing spatial Bayesian models for volumetric fMRI. First, we use integrated nested Laplacian approximations, a highly accurate and efficient Bayesian computation technique, rather than variational Bayes. To identify regions of activation, we utilize an excursions set method based on the joint posterior distribution of the latent fields, rather than the marginal distribution at each location. Finally, we propose the first multi-subject spatial Bayesian modeling approach, which addresses a major gap in the existing literature. The methods are very computationally advantageous and are validated through simulation studies and two task fMRI studies from the Human Connectome Project.
62P10 Applications of statistics to biology and medical sciences; meta analysis
62H35 Image analysis in multivariate analysis
62H11 Directional data; spatial statistics
Full Text: DOI
[1] Adler, R. J., The Geometry of Random Fields (1981), New York: Wiley, New York · Zbl 0478.60059
[2] Barch, D. M.; Burgess, G. C.; Harms, M. P.; Petersen, S. E.; Schlaggar, B. L.; Corbetta, M.; Glasser, M. F.; Curtiss, S.; Dixit, S.; Feldt, C.; Nolan, D., “Function in the Human Connectome: Task-fMRI and Individual Differences in Behavior,”, NeuroImage, 80, 169-189 (2013)
[3] Benjamini, Y.; Hochberg, Y., “Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing,”, Journal of the Royal Statistical Society, Series B, 57, 289-300 (1995) · Zbl 0809.62014
[4] Bishop, C. M., “Pattern Recognition,”, Machine Learning, 128, 1-58 (2006)
[5] Bolin, D.; Lindgren, F., “Spatial Models Generated by Nested Stochastic Partial Differential Equations, With an Application to Global Ozone Mapping,”, The Annals of Applied Statistics, 5, 523-550 (2011) · Zbl 1235.60075
[6] Bolin, D., and Lindgren, F. (2013), “A Comparison Between Markov Approximations and Other Methods for Large Spatial Data Sets,” Computational Statistics and Data Analysis, 61, 7-21. · Zbl 1349.62445
[7] Bolin, D., and Lindgren, F. (2015), “Excursion and Contour Uncertainty Regions for Latent Gaussian Models,” Journal of the Royal Statistical Society, Series B, 77, 85-106. · Zbl 1414.62332
[8] Bolin, D., and Lindgren, F. (2018), “Calculating Probabilistic Excursion Sets and Related Quantities Using Excursions,” Journal of Statistical Software, 86, 1-20.
[9] Dale, A. M.; Fischl, B.; Sereno, M. I., “Cortical Surface-Based Analysis I: Segmentation and Surface Reconstruction,”, NeuroImage, 9, 179-194 (1999)
[10] Eklund, A.; Andersson, M.; Josephson, C.; Johannesson, M.; Knutsson, H., “Does Parametric fMRI Analysis With SPM Yield Valid Results? An Empirical Study of 1484 Rest Datasets,”, NeuroImage, 61, 565-578 (2012)
[11] Eklund, A.; Nichols, T. E.; Knutsson, H., “Cluster Failure: Why fMRI Inferences for Spatial Extent Have Inflated False-Positive Rates,”, Proceedings of the National Academy of Sciences of the United States of America, 113, 7900-7905 (2016)
[12] Fischl, B., “FreeSurfer,”, NeuroImage, 62, 774-781 (2012)
[13] Fischl, B.; Sereno, M. I.; Dale, A. M., “Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System,”, NeuroImage, 9, 195-207 (1999)
[14] Forman, S. D.; Cohen, J. D.; Fitzgerald, M.; Eddy, W. F.; Mintun, M. A.; Noll, D. C., “Improved Assessment of Significant Activation in Functional Magnetic Resonance Imaging (fMRI): Use of a Cluster-Size Threshold,”, Magnetic Resonance in Medicine, 33, 636-647 (1995)
[15] Friston, K.; Penny, W., “Posterior Probability Maps and SPMs,”, NeuroImage, 19, 1240-1249 (2003)
[16] Friston, K. J.; Fletcher, P.; Josephs, O.; Holmes, A.; Rugg, M.; Turner, R., “Event-Related fMRI: Characterizing Differential Responses,”, NeuroImage, 7, 30-40 (1998)
[17] Friston, K. J.; Holmes, A. P.; Worsley, K. J.; Poline, J. P.; Frith, C. D.; Frackowiak, R. S. J., “Statistical Parametric Maps in Functional Imaging: A General Linear Approach,”, Human Brain Mapping, 2, 189-210 (1994)
[18] Fuglstad, G.-A.; Lindgren, F.; Simpson, D.; Rue, H., “Exploring a New Class of Non-stationary Spatial Gaussian Random Fields With Varying Local Anisotropy,”, Statistica Sinica, 25, 115-133 (2015) · Zbl 06497337
[19] Genovese, C. R.; Lazar, N. A.; Nichols, T., “Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate,”, NeuroImage, 15, 870-878 (2002)
[20] Glasser, M. F.; Sotiropoulos, S. N.; Wilson, J. A.; Coalson, T. S.; Fischl, B.; Andersson, J. L.; Xu, J.; Jbabdi, S.; Webster, M.; Polimeni, J. R.; Van Essen, D. C., “The Minimal Preprocessing Pipelines for the Human Connectome Project,”, NeuroImage, 80, 105-124 (2013)
[21] Guttorp, P.; Gneiting, T., “Studies in the History of Probability and Statistics XLIX On the Matérn Correlation Family,”, Biometrika, 93, 989-995 (2006) · Zbl 1436.62013
[22] Harrison, L. M.; Penny, W.; Daunizeau, J.; Friston, K. J., “Diffusion-Based Spatial Priors for Functional Magnetic Resonance Images,”, NeuroImage, 41, 408-423 (2008)
[23] HCP (2016), “Task fMRI Files and Protocol Details.”
[24] Ishwaran, H.; Rao, J. S., “Detecting Differentially Expressed Genes in Microarrays Using Bayesian Model Selection,”, Journal of the American Statistical Association, 98, 438-455 (2003) · Zbl 1041.62090
[25] Lindgren, F.; Rue, H., “Bayesian Spatial Modelling With R-INLA,”, Journal of Statistical Software, 63, 1-25 (2015)
[26] Lindgren, F.; Rue, H.; Lindström, J., “An Explicit Link Between Gaussian Fields and Gaussian Markov Random Fields: The Stochastic Partial Differential Equation Approach” (with discussion),, Journal of the Royal Statistical Society, Series B, 73, 423-498 (2011) · Zbl 1274.62360
[27] Lindquist, M. A., “The Statistical Analysis of fMRI Data,”, Statistical Science, 23, 439-464 (2008) · Zbl 1329.62296
[28] Lindquist, M. A.; Mejia, A., “Zen and the Art of Multiple Comparisons,”, Psychosomatic Medicine, 77, 114 (2015)
[29] Lindquist, M. A.; Spicer, J.; Asllani, I.; Wager, T. D., “Estimating and Testing Variance Components in a Multi-level GLM,”, NeuroImage, 59, 490-501 (2012)
[30] Marchini, J.; Presanis, A., “Comparing Methods of Analyzing fMRI Statistical Parametric Maps,”, NeuroImage, 22, 1203-1213 (2004)
[31] Marcus, D.; Harwell, J.; Olsen, T.; Hodge, M.; Glasser, M.; Prior, F.; Jenkinson, M.; Laumann, T.; Curtiss, S.; Van Essen, D., Frontiers in Neuroinformatics, 5, 4, “Informatics and Data Mining Tools and Strategies for the Human Connectome Project,” (2011)
[32] Martins, T. G.; Simpson, D.; Lindgren, F.; Rue, H., “Bayesian Computing With INLA: New Features,”, Computational Statistics and Data Analysis, 67, 68-83 (2013) · Zbl 06970873
[33] Nichols, T.; Hayasaka, S., “Controlling the Familywise Error Rate in Functional Neuroimaging: A Comparative Review,”, Statistical Methods in Medical Research, 12, 419-446 (2003) · Zbl 1121.62645
[34] Nichols, T. E.; Holmes, A. P., “Nonparametric Permutation Tests for Functional Neuroimaging: A Primer With Examples,”, Human Brain Mapping, 15, 1-25 (2002)
[35] Penny, W. D.; Trujillo-Barreto, N. J.; Friston, K. J., “Bayesian fMRI Time Series Analysis With Spatial Priors,”, NeuroImage, 24, 350-362 (2005)
[36] Poldrack, R. A.; Mumford, J. A.; Nichols, T. E., Handbook of Functional MRI Data Analysis (2011), Cambridge: Cambridge University Press · Zbl 1321.92015
[37] Poline, J.-B.; Mazoyer, B. M., “Analysis of Individual Positron Emission Tomography Activation Maps by Detection Of High Signal-to-Noise-Ratio Pixel Clusters,”, Journal of Cerebral Blood Flow & Metabolism, 13, 425-437 (1993)
[38] Rue, H.; Martino, S.; Chopin, N., “Approximate Bayesian Inference for Latent Gaussian Models Using Integrated Nested Laplace Approximations” (with discussion),, Journal of the Royal Statistical Society, Series B, 71, 319-392 (2009) · Zbl 1248.62156
[39] Rue, H.; Riebler, A.; Sørbye, S. H.; Illian, J. B.; Simpson, D. P.; Lindgren, F. K., “Bayesian Computing With INLA: A Review,” arXiv no. 1604 (2016)
[40] Sidén, P.; Eklund, A.; Bolin, D.; Villani, M., “Fast Bayesian Whole-Brain fMRI Analysis With Spatial 3D Priors,”, NeuroImage, 146, 211-225 (2017)
[41] Smith, S. M.; Nichols, T. E., “Threshold-Free Cluster Enhancement: Addressing Problems of Smoothing, Threshold Dependence and Localisation in Cluster Inference,”, NeuroImage, 44, 83-98 (2009)
[42] Van Essen, D. C.; Smith, S. M.; Barch, D. M.; Behrens, T. E.; Yacoub, E.; Ugurbil, K.; Consortium, WU-Minn HCP, “The WU-Minn Human Connectome Project: An Overview,”, NeuroImage, 80, 62-79 (2013)
[43] Wager, T. D.; Hernandez, L.; Lindquist, M. A., “Essentials of Functional Neuroimaging, Handbook of Neuroscience for the Behavioral Sciences, 152-197 (2009)
[44] Wang, B.; Titterington, D., 373-380 (2005)
[45] Woo, C.-W.; Krishnan, A.; Wager, T. D., “Cluster-Extent Based Thresholding in fMRI Analyses: Pitfalls and Recommendations,”, NeuroImage, 91, 412-419 (2014)
[46] Woolrich, M. W.; Behrens, T. E. J.; Beckmann, C. F.; Jenkinson, M.; Smith, S. M., “Multilevel Linear Modelling for fMRI Group Analysis Using Bayesian Inference,”, NeuroImage, 21, 1732-1747 (2004)
[47] Worsley, K. J.; Friston, K. J., “Analysis of fMRI Time-Series Revisited-Again,”, NeuroImage, 2, 173-181 (1995)
[48] Worsley, K. J.; Liao, C.; Aston, J.; Petre, V.; Duncan, G.; Morales, F.; Evans, A., “A General Statistical Analysis for fMRI Data,”, NeuroImage, 15, 1-15 (2002)
[49] Yue, Y.; Loh, J. M.; Lindquist, M. A., “Adaptive Spatial Smoothing of fMRI Images,”, Statistics and Its Interface, 3, 3-13 (2010) · Zbl 1245.62118
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.