zbMATH — the first resource for mathematics

Copula link-based additive models for right-censored event time data. (English) Zbl 1445.62255
Summary: This article proposes an approach to estimate and make inference on the parameters of copula link-based survival models. The methodology allows for the margins to be specified using flexible parametric formulations for time-to-event data, the baseline survival functions to be modeled using monotonic splines, and each parameter of the assumed joint survival distribution to depend on an additive predictor incorporating several types of covariate effects. All the model’s coefficients as well as the smoothing parameters associated with the relevant components in the additive predictors are estimated using a carefully structured efficient and stable penalized likelihood algorithm. Some theoretical properties are also discussed. The proposed modeling framework is evaluated in a simulation study and illustrated using a real dataset. The relevant numerical computations can be easily carried out using the freely available GJRM R package.

62N01 Censored data models
62H05 Characterization and structure theory for multivariate probability distributions; copulas
CDVine; gamair; GJRM; R; SemiPar
Full Text: DOI
[1] Akaike, H.; Petrov, B. N.; Csaki, B. F., Second International Symposium on Information Theory, “Information Theory and an Extension of the Maximum Likelihood Principle,” (1973), Budapest: Academiai Kiado, Budapest
[2] Bogaerts, K.; Lesaffre, E., “Modeling the Association of Bivariate Interval-Censored Data Using the Copula Approach,”, Statistics in Medicine, 27, 6379-6392 (2008)
[3] Brechmann, E. C.; Schepsmeier, U., “Modeling Dependence With C- and D-Vine Copulas: The R Package CDVine,”, Journal of Statistical Software, 52, 1-27 (2013)
[4] Clayton, D. G., “A Model for Association in Bivariate Life Tables and Its Application in Epidemiological Studies of Familial Tendency in Chronic Disease Incidence,”, Biometrika, 65, 141-151 (1978) · Zbl 0394.92021
[5] Duffy, D. L.; Martin, N. G.; Mathews, J. D., “Appendectomy in Australian Twins,” The, American Journal of Human Genetics, 47, 590-592 (1990)
[6] Geerdens, C.; Acar, E. F.; Janssen, P., “Conditional Copula Models for Right-Censored Clustered Event Time Data,”, Biostatistics, 19, 247-262 (2018)
[7] Hjort, N. L., “On Inference in Parametric Survival Data Models,”, International Statistical Review, 60, 355-387 (1992) · Zbl 0762.62009
[8] Kauermann, G.; Schellhase, C.; Ruppert, D., “Flexible Copula Density Estimation With Penalized Hierarchical B-Splines,”, Scandinavian Journal of Statistics, 40, 685-705 (2013) · Zbl 1364.62084
[9] Leitenstorfer, F.; Tutz, G., “Generalized Monotonic Regression Based on B-Splines With an Application to Air Pollution Data,”, Biostatistics, 8, 654-673 (2007) · Zbl 1118.62125
[10] Li, R.; Cheng, Y.; Chen, Q.; Jason, F., “Quantile Association for Bivariate Survival Data,”, Biometrics, 73, 506-516 (2017) · Zbl 1372.62075
[11] Liu, X.-R.; Pawitan, Y.; Clements, M., “Parametric and Penalized Generalized Survival Models,”, Statistical Methods in Medical Research, 27, 1531-1546 (2018)
[12] Marra, G.; Radice, R., “Bivariate Copula Additive Models for Location, Scale and Shape,”, Computational Statistics and Data Analysis, 112, 99-113 (2017) · Zbl 06914552
[13] Marra, G.; Radice, R. (2019)
[14] Marra, G.; Radice, R.; Bärnighausen, T.; Wood, S. N.; McGovern, M. E., “A Simultaneous Equation Approach to Estimating HIV Prevalence With Non-ignorable Missing Responses,”, Journal of the American Statistical Association, 112, 484-496 (2017)
[15] Marra, G.; Wood, S., “Coverage Properties of Confidence Intervals for Generalized Additive Model Components,”, Scandinavian Journal of Statistics, 39, 53-74 (2012) · Zbl 1246.62058
[16] Meyer, M., “Constrained Penalized Splines,”, Canadian Journal of Statistics, 40, 190-206 (2012) · Zbl 1236.62033
[17] Meyer, R.; Romeo, J., “Bayesian Semi-parametric Analysis of Recurrent Failure Time Data Using Copulas,”, Biometrical Journal, 57, 982-1001 (2015) · Zbl 1386.62060
[18] Nan, B.; Lin, X.; Lisabeth, L. D.; Harlow, S. D., “Piecewise Constant Cross-Ratio Estimation for Association of Age at a Marker Event and Age at Menopause,”, Journal of the American Statistical Association, 101, 65-77 (2006) · Zbl 1118.62374
[19] Nelsen, R., An Introduction to Copulas (2006), New York: Springer, New York · Zbl 1152.62030
[20] Nocedal, J.; Wright, S. J., Numerical Optimization (2006), New York: Springer-Verlag, New York · Zbl 1104.65059
[21] Oakes, D., “A Model for Association in Bivariate Survival Data,”, Journal of the Royal Statistical Society, Series B, 44, 414-422 (1982) · Zbl 0503.62035
[22] Oakes, D., “A Class of Multivariate Failure Time Distributions,”, Biometrika, 73, 671-678 (1986) · Zbl 0613.62121
[23] Prenen, L.; Braekers, R.; Duchateau, L., “Extending the Archimedean Copula Methodology to Model Multivariate Survival Data Grouped in Clusters of Variable Size,”, Journal of the Royal Statistical Society, Series B, 79, 483-505 (2017) · Zbl 1414.62408
[24] Pya, N.; Wood, S., “Shape Constrained Additive Models,”, Statistics and Computing, 25, 543-559 (2015) · Zbl 1331.62367
[25] R Development Core Team, R: A Language and Environment for Statistical Computing (2019), Vienna, Austria: R Foundation for Statistical Computing, Vienna, Austria
[26] Reid, N., “A Conversation With Sir David Cox,”, Statistical Science, 9, 439-455 (1994) · Zbl 0955.01543
[27] Romeo, J.; Meyer, R.; Gallardo, D., “Bayesian Bivariate Survival Analysis Using the Power Variance Function Copula,”, Lifetime Data Analysis, 24, 355-383 (2018) · Zbl 06891889
[28] Royston, P.; Parmar, M., “Flexible Parametric Proportional-Hazards and Proportional-Odds Models for Censored Survival Data, With Application to Prognostic Modelling and Estimation of Treatment Effects,”, Statistics in Medicine, 21, 2175-2197 (2002)
[29] Ruppert, D.; Wand, M. P.; Carroll, R. J., Semiparametric Regression (2003), New York: Cambridge University Press, New York · Zbl 1038.62042
[30] Schoenfeld, D. A. (2017)
[31] Segers, J.; van den Akker, R.; Werker, B. J. M., “Semiparametric Gaussian Copula Models: Geometry and Efficient Rank-Based Estimation,”, Annals of Statistics, 42, 1911-1940 (2014) · Zbl 1305.62115
[32] Therneau, T. M.; Lumley, T. (2018)
[33] Vatter, T.; Chavez-Demoulin, V., “Generalized Additive Models for Conditional Dependence Structures,”, Journal of Multivariate Analysis, 141, 147-167 (2015) · Zbl 1328.62390
[34] Wienke, A.; Lichtenstei, P.; Yashin, A., “A Bivariate Frailty Model With a Cure Fraction for Modeling Familial Correlations in Diseases,”, Statistics and Computing, 59, 1178-1183 (2003) · Zbl 1274.62903
[35] Wood, S. N., “Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models,”, Journal of the American Statistical Association, 99, 673-686 (2004) · Zbl 1117.62445
[36] Wood, S. N., “On p-Values for Smooth Components of an Extended Generalized Additive Model,” Biometrika, 100, 221-228 (2013) · Zbl 1284.62270
[37] Wood, S. N., “Generalized Additive Models: An Introduction With R (2017), London: Chapman and Hall/CRC, London · Zbl 1368.62004
[38] Zhang, J., “A Simple and Efficient Monotone Smoother Using Smoothing Splines,”, Journal of Nonparametric Statistics, 16, 779-796 (2004) · Zbl 1049.62045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.