×

Analysis of age and spatially dependent population model: application to forest growth. (English) Zbl 1453.92240

Summary: In this paper, we consider an age-structured population model with diffusion. We first establish a comparison principle. We then apply the comparison principle to show the existence and uniqueness of solutions by constructing monotone sequences of weak upper and lower solutions. We also use the comparison principle to study the long-time behavior of the solution and present extinction and boundedness results under certain conditions on the parameters in the model. Additionally, as an example of its application, we apply the model to describe the dynamics of a forest population.

MSC:

92D25 Population dynamics (general)
92D40 Ecology

Software:

SORTIE
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Kunisch, K.; Schappacher, W.; Webb, G. F., Nonlinear age-dependent population dynamics with random diffusion, Comput. Math. Appl., 11, 155-173 (1985) · Zbl 0581.92021
[2] Walker, C., Age-dependent equations with non-linear diffusion, Discrete Contin. Dyn. Syst.-A, 26, 691-712 (2010) · Zbl 1184.35201
[3] Thieme, H. R., Analysis of age-structured population models with an additional structure, (Arino, O.; Axelrod, D. E.; Kimmel, M., Proceedings of the Second International Conference (1991), Marcel Dekker), 115-125 · Zbl 0748.92009
[4] Magal, P.; Ruan, S., On integrated semigroups and age structured models in \(L^p\) spaces, Differential Integral Equations, 20, 197-239 (2007) · Zbl 1212.35238
[5] Langlais, M., Large time behavior in a nonlinear age-dependent population dynamics problem with spatial diffusion, J. Math. Biol., 26, 319-346 (1988) · Zbl 0713.92019
[6] Garroni, M. G.; Langlais, M., Age-dependent population diffusion with external constraint, J. Math. Biol., 14, 77-94 (1982) · Zbl 0506.92018
[7] Langlais, M., A nonlinear problem in age-dependent population diffusion, SIAM J. Math. Anal., 16, 510-529 (1985) · Zbl 0589.92013
[8] Rhandi, A., Positivity and stability for a population equation with diffusion on \(L^1\), Positivity, 2, 101-113 (1998) · Zbl 0918.34058
[9] Rhandi, A.; Schnaubelt, H., Asymptotic behaviour of a non-autonomous population equation with diffusion in \(\operatorname{L}^1\), Discrete Contin. Dyn. Syst.-A, 5, 663-683 (1999) · Zbl 1002.92016
[10] Thieme, H. R., Positive perturbation of operator semigroups, Discrete Contin. Dyn. Syst.-A, 4, 735-764 (1998) · Zbl 0988.47024
[11] Walker, C., Some remarks on the asymptotic behavior of the semigroup associated with age-structured diffusive populations, Mon.hefte Math., 170, 481-501 (2013) · Zbl 1277.47057
[12] Magal, P.; Thieme, H. R., Eventual compactness for semiflows generated by nonlinear age-structured models, Commun. Pure Appl. Anal., 3, 695-727 (2004) · Zbl 1083.47061
[13] Walker, C., Positive equilibrium solutions for age-and spatially-structured population models, SIAM J. Math. Anal., 41, 1366-1387 (2009) · Zbl 1204.35040
[14] Walker, C., Global bifurcation of positive equilibria in nonlinear population models, J. Differential Equations, 248, 1756-1776 (2010) · Zbl 1197.35041
[15] Walker, C., Global continua of positive solutions for some quasilinear parabolic equation with a nonlocal initial condition, J. Dynam. Differential Equations, 25, 159-172 (2013) · Zbl 1264.35029
[16] Delgado, M.; Molina-Becerra, M.; Suárez, A., Nonlinear age-dependent diffusive equations: A bifurcation approach, J. Differential Equations, 244, 2133-2155 (2008) · Zbl 1145.35019
[17] Ainseba, B. E.; Anita, S.; Langlais, M., Optimal control for a nonlinear age-structured population dynamics model, Electron. J. Differential Equations, 29, 1-9 (2002)
[18] Ayati, B. P.; Dupont, T. F., Galerkin methods in age and space for a population model with nonlinear diffusion, SIAM J. Numer. Anal., 40, 1064-1076 (2002) · Zbl 1015.92031
[19] Cusulin, C.; Gerardo-Giorda, L., A numerical method for spatial diffusion in age-structured populations, Numer. Methods Partial Differential Equations, 26, 253-273 (2010) · Zbl 1181.92080
[20] Kim, M.-Y.; Park, E.-J., Mixed approximation of a population diffusion equation, Comput. Math. Appl., 30, 23-33 (1995) · Zbl 0840.65139
[21] Milner, F. A., A numerical method for a model of population dynamics with spatial diffusion, Comput. Math. Appl., 19, 31-43 (1990) · Zbl 0697.92021
[22] Ducrot, A.; Magal, P., Travelling wave solutions for an infection-age structured model with diffusion, Proc. R. Soc. Edinb.: A Math., 139, 459-482 (2009) · Zbl 1178.35117
[23] Dyson, J.; Villella-Bressan, R.; Webb, G., A spatial model of tumor growth with cell age, cell size, and mutation of cell phenotypes, Math. Model. Nat. Phenom., 2, 69-100 (2007) · Zbl 1337.92044
[24] Fitzgibbon, W. E.; Parrott, M. E.; Webb, G. F., Diffusive epidemic models with spatial and age dependent heterogeneity, Discrete Contin. Dyn. Syst.-A, 1, 35-57 (1995) · Zbl 0868.92023
[25] Langlais, M.; Busenberg, S., Global behaviour in age structured SIS models with seasonal periodicities and vertical transmission, J. Math. Anal. Appl., 213, 511-533 (1997) · Zbl 1002.92556
[26] Walker, C., Global existence for an age and spatially structured haptotaxis model with nonlinear age-boundary conditions, European J. Appl. Math., 19, 113-147 (2008) · Zbl 1136.92023
[27] Webb, G. F., An age-dependent epidemic model with spatial diffusion, Arch. Ration. Mech. Anal., 75, 91-102 (1980) · Zbl 0484.92018
[28] Webb, G. F., Diffusive age-dependent population models and an application to genetics, Math. Biosci., 61, 1-16 (1982) · Zbl 0525.92009
[29] Webb, G. F., A recovery-relapse epidemic model with spatial diffusion, J. Math. Biol., 14, 177-194 (1982) · Zbl 0518.92023
[30] Cushing, J. M., (An Introduction to Structured Population Dynamics. An Introduction to Structured Population Dynamics, Conference Series in Applied Mathematics, vol. 71 (1998), SIAM: SIAM Philadelphia) · Zbl 0939.92026
[31] Iannelli, M., Mathematical Theory of Age-Structured Population Dynamics (1995), Giardini Editori e Stampatori in Pisa
[32] Webb, G. F., Population models structured by age, size, and spatial position, (Structured Population Models in Biology and Epidemiology (2008), Springer), 1-49
[33] Webb, G. F., Theory of Nonlinear Age-Dependent Population Dynamics (1985), CRC Press · Zbl 0555.92014
[34] Ackleh, A. S.; Deng, K., A monotone approximation for the nonautonomous size-structured population model, Quart. Appl. Math., 57, 261-267 (1999) · Zbl 1157.35491
[35] Ackleh, A. S.; Deng, K., Existence-uniqueness of solutions for a nonlinear nonautonomous size-structured population model: an upper-lower solution approach, Can. Appl. Math. Q., 8, 1-15 (2000) · Zbl 0981.92023
[36] Ackleh, A. S.; Deng, K., A monotone approximation for a nonlinear nonautonomous size-structured population model, Appl. Math. Comput., 108, 103-113 (2000) · Zbl 1016.92025
[37] Deng, K.; Wu, Y., Extinction and uniform strong persistence of a size-structured population model, Discrete Contin. Dyn. Syst. Ser. B, 22, 831-840 (2017) · Zbl 1360.92088
[38] Deng, K.; Wu, Y., Global stability for a nonlocal reaction-diffusion population model, Nonlinear Anal. RWA, 25, 127-136 (2015) · Zbl 1328.35091
[39] Deng, K.; Wu, Y., On the diffusive nicholson’s blowflies equation with distributed delay, Appl. Math. Lett., 50, 126-132 (2015) · Zbl 1328.35092
[40] Ackleh, A. S.; Deng, K., A nonautonomous juvenile-adult model: well-posedness and long-time behavior via a comparison principle, SIAM J. Appl. Math., 69, 1644-1661 (2009) · Zbl 1181.92076
[41] Magal, P.; Zhang, Z., Competition for light in forest population dynamics: From computer simulator to mathematical model, J. Theoret. Biol., 419, 290-304 (2017) · Zbl 1370.92140
[42] Magal, P.; Zhang, Z., A system of state-dependent delay differential equation modelling forest growth I: semiflow properties, J. Evol. Equ., 18, 4, 1853-1888 (2018) · Zbl 1416.35278
[43] Magal, P.; Zhang, Z., A system of state-dependent delay differential equation modelling forest growth II: boundedness of solutions, Nonlinear Anal. Real World Appl., 42, 334-352 (2018) · Zbl 1404.92160
[44] Aronson, D.; Crandall, M. G.; Peletier, L. A., Stabilization of solutions of a degenerate nonlinear diffusion problem, Nonlinear Anal.: Theory Methods Appl., 10, 1001-1022 (1982) · Zbl 0518.35050
[45] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order (2015), Springer · Zbl 0691.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.