×

Periodic derivative of solutions to nonlinear differential equations. (English) Zbl 0727.34029

The differential equation of the form \((1)\quad x^{(n)}=f(t,x,x',...,x^{(n-1)})\) \((n>1)\), \(x(\theta)-x(0)-\omega =x^{(i)}(\theta)-x^{(i)}(0)=0,\quad i=1,...,n-1,\) where \(f(t+\theta,x+\omega,x',...,x^{(n-1)})\equiv f(t,x,x',...,x^{(n- 1)})\in C({\mathbb{R}}^{n+1})\) satisfies locally a Lipschitz condition with respect to \(x,x',...,x^{(n-1)}\) and \(\theta\), \(\omega\) are positive reals are considered. The question of existence of a type of solution of equation (1), the so-called D-periodic (derivo-periodic) solutions, is discussed in the article. Up to now sufficient conditions for the existence of such solution have been found in an autonomous case in a nonautonomous case with a small parameter. The purpose of the article is to get sufficient conditions for the existence of D-periodic solutions for (D-)periodically forced equations not necessarily involving a small parameter. The topological degree theory is used to prove the basic theorem.

MSC:

34C25 Periodic solutions to ordinary differential equations
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] H. Poincaré: Lés méthodes nouvelles de la mécanique céleste. Gauthiers-Villars, Paris, 1892. · JFM 25.1847.03
[2] M. Farkas: On stability and geodesies. Ann. Univ. Sci. Budapest. Rol. Eötvös Nom. 11 (1968), 145-159. · Zbl 0177.50304
[3] R. B. Barrar: Existence of periodic solutions of the second kind in the restricted problem of three bodies. Astronom. J. 70, 1 (1965), 3 - 4.
[4] H. E. Edgerton, P. Fourmarier: The pulling-into-step of a salient-pole synchronous motor. Trans. A.I.E.E. 50 (1931), 769-778.
[5] P. Meystre: Free-electron lasers: An introduction. In ,,Laser Physics (D. F. Walls and J. D. Harvey,”. Academic Press, Sydney-New York-London-Toronto-San Francisco, 1980.
[6] M. Farkas: Controllably periodic perturbations of autonomous systems. Acta Math. Acad. Sci. Hungar. 22, 3-4 (19 1), 337-348. · Zbl 0239.34016
[7] M. Farkas: Determination of controllably periodic perturbed solutions by Poincaré’s method. Stud. Sci. Math. Hungar. 7 (1972), 257-266. · Zbl 0275.34038
[8] J. Andres: Solution with periodic second derivative of a certain third order differential equation. Math. Slovaca 37, 3 (1987), 239-245. · Zbl 0629.34048
[9] R. Reissig: Phasenraum-Methoden zum Studium nichtlinearen Differentialgleichungen. Jber. Deutsch. Math. 75 (1974), 130-139. · Zbl 0287.34053
[10] S. Fučík J. Nečas J. Souček, V. Souček: Spectral Analysis of Nonlinear Operators. LNM 346, Springer-Verlag, Berlin-Heidelberg-New York, 1973. · Zbl 0268.47056
[11] J. Mawhin: An extension of a theorem of A. C. Lazer on forced nonlinear oscillations. J. Math. Anal. Appl. 40 (1972), 20-29. · Zbl 0245.34035
[12] C. H. Hardy J. E. Littlewood, G. Polya: Inequalities. Cambridge University Press, London, 1951.
[13] J. Andres: On local \(\omega\)-cycles to certain third order nonlinear differential equations. Fasc. Math. 17 (1987), 49-54. · Zbl 0648.34043
[14] S. N. Chow, A. Lasota: On boundary value problems for ordinary differential equations. J. Diff. Eqns 14, 2 (1973), 326-337. · Zbl 0285.34009
[15] S. H. Chang: Periodic solutions of certain differential equations with quasibounded nonlinearities. J. Math. Anal. Appl. 56 (1976), 165-171. · Zbl 0338.34034
[16] R. Reissig: Periodic solutions of certain higher order differential equations. Nonlinear Analysis, T.M.A. 2, 5 (1978), 635-642. · Zbl 0385.34019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.