×

Extensions of positive projections and averaging operators. (English) Zbl 0727.47021

The authors prove extension theorems for positive projections in order complete Riesz spaces and Archimedean semiprime f-algebras thereby extending results of G. L. Seever [Pac. J. Math. 17, 159-166 (1966; Zbl 0137.10002)] and C. B. Huijsmans and B. de Pagter [J. Math. Anal. Appl. 113, 163-184 (1986; Zbl 0604.47024)].

MSC:

47B65 Positive linear operators and order-bounded operators
47B60 Linear operators on ordered spaces
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Basly, M; Triki, A, F-algebras in which every order ideal is a ring ideal, (), 231-234 · Zbl 0662.46006
[2] Bigar, A; Keimel, K; Wolfenstein, S, Groupes et anneaux réticulés, () · Zbl 0384.06022
[3] Huijsmans, C.B; De Pagter, B, Ideal theory in f-algebras, Trans. amer. math. soc., 269, 225-245, (1982) · Zbl 0483.06009
[4] Huijsmans, C.B; De Pagter, B, Averaging operators and positive contractive projections, J. math. anal. appl., 113, 163-184, (1986) · Zbl 0604.47024
[5] Kelley, J.L, Averaging operators on C∞(X), Illinois J. math., 2, 214-223, (1958) · Zbl 0080.32001
[6] Luxemburg, W.A.J; Zaanen, A.C, Riesz spaces I, (1971), North-Holland Amsterdam · Zbl 0231.46014
[7] {\scB. De Pagter}, “f-Algebras and Orthomorphisms,” Thesis, Leiden. · Zbl 0538.46009
[8] Schaefer, H.H, Banach lattices and positive operators, () · Zbl 0291.46008
[9] Seever, G.L, Non negative projections on C0(X), Pacific J. math., 17, 159-166, (1966) · Zbl 0137.10002
[10] Vulikh, B.Z, Introduction to the theory of partially ordered spaces, (1967), Wolters-Noordhoff Groningen · Zbl 0186.44601
[11] Zaanen, A.C, Riesz spaces II, (1983), North-Holland Amsterdam · Zbl 0519.46001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.