zbMATH — the first resource for mathematics

The large-time asymptotics of some Wiener integrals and the interband light absorption coefficient in the deep fluctuation spectrum. (English) Zbl 0727.60121
Authors’ summary: We prove the existence of the interband-light-absorption coefficient and investigate its asymptotics for a number of models.
Reviewer: V.Bach (Zürich)

60K40 Other physical applications of random processes
82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics
Full Text: DOI
[1] Bonch-Bruevich, V.L., Enderlein, R., Esser, B., Kneiper, R., Mironov, A.G., Zuyagagin, I.P.: Elektronentheorie Ungeordneter Halbleiter. Berlin: Deutscher Verlag der Wissenschaften 1984
[2] Efros, A.L., Shklowski, B.L.: Electronic properties of doped semiconductors. Berlin Heidelberg New York: Springer 1984
[3] Lifshitz, I.M., Gredeskul, S.A., Pastur, L.A.: Introduction in the theory of disordered systems. Moskau: Nauka 1982 and New York: Wiley 1988
[4] Arbuzov, Yu.D., Evdokimov, V.M., Kolenkin, M.Yu.: JETP92, 1351–1356 (1987)
[5] Reed, M., Simon, B.: Methods of modern mathematical physics. IV. Analysis of operators. New York: Academic Press 1978 · Zbl 0401.47001
[6] Simon, B.: Functional integration and quantum physics. New York: Academic Press 1979 · Zbl 0434.28013
[7] Krengel, U.: Ergodic theorems. Berlin: de Gruyter 1985 · Zbl 0575.28009
[8] Pastur, L.A.: Russ. Math. Surveys28, 1–67 (1973) · Zbl 0277.60049
[9] Gikhman, I.I., Skorokhod, A.V.: Introduction to the theory of random processes. Philadelphia: Saunders 1969 · Zbl 0132.37902
[10] Kirsch, W., Martinelli, F.: J. Phys. A15, 2139–2156 (1982) · Zbl 0492.60055
[11] Kirsch, W.: Adv. Appl. Math.6, 177–187 (1985) · Zbl 0578.60059
[12] Bratelli, O.: Robinson, D.W.: Operator algebras and quantum statistical mechanics. II. Berlin Heidelberg New York: Springer 1981
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.