Some differential complexes within and beyond parabolic geometry. (English) Zbl 1453.53014

Shoda, Toshihiro (ed.) et al., Differential geometry and Tanaka theory. Differential system and hypersurface theory. Proceedings of the international conference, RIMS, Kyoto University, Japan, January, 24–28, 2011. Tokyo: Mathematical Society of Japan. Adv. Stud. Pure Math. 82, 13-40 (2019).
A. Čap et al. [Ann. Math. (2) 154, No. 1, 97–113 (2001; Zbl 1159.58309)] constructed sequences of invariant differential operators on parabolic geometries of any type \(G/P\), one for each finite-dimensional representation \(V\) of \(G\), where \(G\) is a semisimple Lie group and \(P\subset G\) a parabolic subgroup. These sequences are known as Bernstein-Gelfand-Gelfand (BGG) sequences. D. M. J. Calderbank and T. Diemer [J. Reine Angew. Math. 537, 67–103 (2001; Zbl 0985.58002)] simplified the construction of BGG sequences.
In the paper under review, the authors present some examples constructed in a more elementary way. Their method extends to certain non-parabolic geometries, namely arbitrary contact and symplectic geometries. The spectral sequence of a filtered complex [T. Y. Chow, Notices Am. Math. Soc. 53, No. 1, 15–19 (2006; Zbl 1092.55014)] is used as a replacement for tedious diagram chasing.
For the entire collection see [Zbl 1437.53042].


53A40 Other special differential geometries
53D10 Contact manifolds (general theory)
58A12 de Rham theory in global analysis
58A17 Pfaffian systems
58J10 Differential complexes
58J70 Invariance and symmetry properties for PDEs on manifolds
Full Text: DOI arXiv Euclid


[1] R. J. Baston and M. G. Eastwood, The Penrose transform. Its interaction with representation theory, Oxford Mathematical Monographs, Oxford University Press, New York, 1989. · Zbl 0726.58004
[2] I. N. Bernstein, I. M. Gelfand and S. I. Gelfand, Differential operators on the base affine space and a study ofg-modules. Lie groups and · Zbl 0338.58019
[3] T. Bouche, La cohomologie coeffective d’une vari´et´e symplectique, Bull. Sci. Math.,114(1990), no. 2, 115-122. · Zbl 0714.58001
[4] R. L. Bryant, Conformal geometry and 3-plane fields on 6-manifolds (Developments of Cartan Geometry and Related Mathematical Problems), S¯urikaisekikenky¯usho K¯oky¯uroku,1502(2006), 1-15.
[5] D. M. J. Calderbank and T. Diemer, Differential invariants and curved Bernstein-Gelfand-Gelfand sequences, J. Reine Angew. Math.537 (2001), 67-103. · Zbl 0985.58002
[6] A. ˇCap and H. Schichl, Parabolic geometries and canonical Cartan connections, Hokkaido Math. J.29(2000), no. 3, 453-505.
[7] A. ˇCap and J. Slov´ak, Parabolic Geometries. I. Background and general theory, Mathematical Surveys and Monographs,154, American Mathematical Society., Providence, RI, 2009.
[8] A. ˇCap, J. Slov´ak and V. Souˇcek, Bernstein-Gelfand-Gelfand sequences, Ann. of Math. (2)154(2001), no. 1, 97-113.
[9] E. Cartan, Les syst‘emes de Pfaff, ´a cinq variables et les ´equations aux d´eriv´ees partielles du second ordre, Ann. Sci. ´Ecole Norm. Sup. (3)27 (1910), 109-192. · JFM 41.0417.01
[10] T. Y. Chow, You could have invented spectral sequences, Notices Amer. Math. Soc.,53(2006), no. 1, 15-19. · Zbl 1092.55014
[11] M. Fern´andez, R. Ib´a˜nez and M. de Le´on, Coeffective and de Rham cohomologies of symplectic manifolds, J. Geom. Phys.27(1998), no. 3-4, 281-296.
[12] R. G. Montgomery, Engel deformations and contact structures, Northern California Symplectic Geometry Seminar, 103-117, Amer. Math. Soc. Transl. Ser. 2196, Adv. Math. Sci.45, Amer. Math. Soc., Providence, RI, 1999.
[13] R. G. Montgomery, A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs,91, American Mathematical Society, Providence, RI, 2002. · Zbl 1044.53022
[14] J. Peetre, R´ectification “a l’article “une caract´erisation abstraite des op´erateurs diff´erentiels”, Math. Scand.8(1960), 116-120.
[15] M. Rumin, Un complexe de formes diff´erentielles sur les vari´et´es de contact, C. R. Acad. Sci. Paris S´er. I Math.310(1990), no. 6, 401-404. · Zbl 0694.57010
[16] N. Seshadri, Private communication, September 2007.
[17] R. T. Smith, Examples of elliptic complexes, Bull. Amer. Math. Soc.82 (1976), no. 2, 297-299. · Zbl 0357.35062
[18] L.-S. Tseng and S.-T. Yau, Cohomology and Hodge theory on symplectic manifolds: I, J. Differential Geom.91(2012), no. 3, 383-416. · Zbl 1275.53079
[19] L.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.