zbMATH — the first resource for mathematics

Blackout analysis of Mars entry missions. (English) Zbl 1460.76602
Summary: A new methodology to accurately and efficiently examine the radio frequency blackout phenomenon during the hypersonic reentry process is introduced and validated. The current state-of-the-art thermochemical modelling of CO\(_2\) flows is reviewed and one-dimensional stagnation line studies are performed in order to determine a suitable chemical mechanism for the electron density modelling. Hypersonic computational fluid dynamics (CFD) simulations are performed with a simplified chemical model including only neutral species, in order to calculate the flow field surrounding the ExoMars Schiapparelli module in flight conditions. A novel decoupled CFD approach is then applied where the calculation of the electron density is performed separately using a computationally inexpensive Lagrangian approach. Subsequently, a ray tracing algorithm is applied in order to model the propagation of electromagnetic waves in the wake flow past the ExoMars vehicle accounting for collisions between electrons and gas particles. The numerical results of the proposed novel approach for blackout analysis consisting of CFD, Lagrangian and ray tracing algorithms are in good agreement with the flight data.
Reviewer: Reviewer (Berlin)
76K05 Hypersonic flows
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
Full Text: DOI
[1] Anderson, J. D. Jr2006Hypersonic and High-temperature Gas Dynamics. American Institute of Aeronautics and Astronautics.
[2] Asmar, S., Esterhuizen, S., Gupta, Y., De, K., Firre, D., Edwards, C. & Ferri, F.2017 Direct-to-earth radio link from the ExoMars Schiaparelli lander. In 14th International Planetary Probe Workshop.
[3] Barth, T.1994Aspects of Unstructured Grids and Finitevolume Solvers for the Euler and Navier-Stokes Equations. NASA.
[4] Bayle, O., Lorenzoni, L., Blancquaert, T., Langlois, S., Walloschek, T., Portigliotti, S. & Capuano, M.2011 Exomars entry descent and landing demonstrator mission and design overview. NASA Solar System.
[5] Boccelli, S., Bariselli, F., Dias, B. & Magin, T. E.2019Lagrangian diffusive reactor for detailed thermochemical computations of plasma flows. Plasma Sources Sci. Technol.28 (6), 065002.
[6] Candler, G. V. & Maccormack, R. W.1991Computation of weakly ionized hypersonic flows in thermochemical nonequilibrium. J. Thermophys. Heat Transfer5 (3), 266-273.
[7] Capitelli, M., Colonna, G., Giordano, D., Marraffa, L., Casavola, A., Minelli, P., Pagano, D., Pietanza, L. & Taccogna, F.2005High-temperature thermodynamic properties of mars-atmosphere components. J. Spacecr. Rockets42 (6), 980-989.
[8] Chen, F. F.2018Introduction to Plasma Physics and Controlled Fusion. Springer.
[9] Davies, K.1965Ionospheric Radio Propagation. US Department of Commerce, National Bureau of Standards.
[10] Degrez, G., Lani, A., Panesi, M., Chazot, O. & Deconinck, H.2009Modelling of high-enthalpy, high-Mach number flows. J. Phys. D: Appl. Phys.42 (19), 194004.
[11] Delfino, A.2004 Modeling of the antenna radiation pattern of a re-entry space vehicle in the presence of plasma. PhD thesis, University of Illinois, Chicago.
[12] Evans, J. S., Schexnayder, C. J. & Grose, W. L.1974Effects of nonequilibrium ablation chemistry on Viking radio blackout. J. Spacecr. Rockets11 (2), 84-88.
[13] Fertig, M.2012 Report and library on gas phase chemistry. Tech. Rep. SPA.2010.3.2-04. DLR, SACOMAR.
[14] Giovangigli, V.2012Multicomponent flow modeling. Sci. China Maths55 (2), 285-308. · Zbl 1238.35064
[15] Gnoffo, P. A., Gupta, R. N. & Shinn, J. L.1989 Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium. NASA Tech. Rep. 2867.
[16] Gordon, S. & Mcbride, B. J.1999 Thermodynamic data to 20 000 K for monatomic gases. Tech. Rep. E-11260. NASA.
[17] Gurvich, L. V., Veyts, I. V. & Alcock, C. B.1989-1992Thermodynamic Properties of Individual Substances. Hemisphere Publishing Corporation.
[18] Hirsch, C.2007Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics. Butterworth-Heinemann.
[19] Hirschel, E. H.2005Basics of Aerothermodynamics. Springer.
[20] Ho, C., Golshan, N. & Kliore, A.2002 Radio wave propagation handbook for communication on and around mars. Tech. Rep. National Aeronautics and Space Administration.
[21] Holman, T. D. & Boyd, I. D.2011Effects of continuum breakdown on hypersonic aerothermodynamics for reacting flow. Phys. Fluids23 (2), 027101.
[22] Hornung, H. G., Schramm, J. M. & Hannemann, K.2019Hypersonic flow over spherically blunted cone capsules for atmospheric entry. Part 1. The sharp cone and the sphere. J. Fluid Mech.871, 1097-1116. · Zbl 1419.76418
[23] Horton, T. E.1964The JPL Thermochemistry and Normal Shock Computer Program. Jet Propulsion Laboratory, California Institute of Technology.
[24] Inan, U. S. & Gołkowski, M.2010Principles of Plasma Physics for Engineers and Scientists. Cambridge University Press.
[25] Jung, M., Kihara, H., Abe, K.-I. & Takahashi, Y.2016Numerical analysis on the effect of angle of attack on evaluating radio-frequency blackout in atmospheric reentry. J. Korean Phys. Soc.68 (11), 1295-1306.
[26] Karatekin, O., Van Hove, B., Gerbal, N., Asmar, S., Firre, D., Denis, M., Aboudan, A., Ferri, F. & 2018 Post-flight analysis of the radio Doppler shifts of the ExoMars Schiaparelli lander. In 15th International Planetary Probe Workshop.
[27] Khraibut, A., Gai, S. L. & Neely, A. J.2019Numerical study of bluntness effects on laminar leading edge separation in hypersonic flow. J. Fluid. Mech.878, 386-419. · Zbl 1430.76352
[28] Kimpe, D., Lani, A., Quintino, T., Poedts, S. & Vandewalle, S.2005 The coolfluid parallel architecture. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3666, pp. 520-527. · Zbl 1129.65328
[29] Klomfass, A. & Müller, S.1997Calculation of stagnation streamline quantities in hypersonic blunt body flows. Shock Waves7 (1), 13-23. · Zbl 0872.76051
[30] Knight, D., Chazot, O., Austin, J., Badr, M. A., Candler, G., Celik, B., Rose, D., Donelli, R., Komives, J., Lani, A., et al.2017Assessment of predictive capabilities for aerodynamic heating in hypersonic flow. Prog. Aerosp. Sci.90, 39-53.
[31] Lani, A., Quintino, T., Kimpe, D., Deconinck, H., Vandewalle, S. & Poedts, S.2005 The COOLFluiD framework: design solutions for high performance object oriented scientific computing software. In International Conference on Computational Science, pp. 279-286. Springer. · Zbl 1129.65328
[32] Lani, A., Villedieu, N., Bensassi, K., Kapa, L., Vymazal, M., Yalim, M. S. & Panesi, M.2013 COOLFluiD: an open computational platform for multi-physics simulation and research. In AIAA 2013-2589. 21th AIAA CFD Conference, San Diego, CA.
[33] Lankford, D. W.1972 A study of electron collision frequency in air mixtures and turbulent boundary. Tech. Rep. AFWL-TR-72-71. Air Force Weapons Laboratory.
[34] Ling, H., Chou, R.-C. & Lee, S.-W.1989Shooting and bouncing rays: calculating the RCS of an arbitrarily shaped cavity. IEEE Trans. Antennas Propag.37 (2), 194-205.
[35] Liou, M.-S.1996A sequel to AUSM: \(AUSM^+\). J. Comput. Phys.129 (2), 364-382. · Zbl 0870.76049
[36] Magin, T.2004 A model for inductive plasma wind tunnels. PhD thesis, Université libre de Bruxelles.
[37] Mcbride, B. J., Gordon, S. & Reno, M. A.1993 Coefficients for calculating thermodynamic and transport properties of individual species. Tech. Rep. National Aeronautics and Space Administration.
[38] Mcbride, B. J., Zehe, M. J. & Gordon, S.2002 NASA Glenn coefficients for calculating thermodynamic properties of individual species. Tech. Rep. National Aeronautics and Space Administration.
[39] Mehra, N., Singh, R. K. & Bera, S. C.2015Mitigation of communication blackout during re-entry using static magnetic field. Pr. Electromagn. Res. B63, 161-172.
[40] Met 2013 CFD++ User Manual. Metacomp Technologies Inc., version 14.1.
[41] Millikan, R. C. & White, D. R.1963Systematics of vibrational relaxation. J. Chem. Phys.39 (12), 3209-3213.
[42] Mitcheltree, R. A. & Gnoffo, P. A.1995Wake flow about the mars pathfinder entry vehicle. J. Spacecr. Rockets32 (5), 771-776.
[43] Morabito, D. D.2002 The spacecraft communications blackout problem encountered during passage or entry of planetary atmospheres. IPN Progress Report 42-150, pp. 1-23.
[44] Morabito, D., Kornfeld, R., Bruvold, K., Craig, L. & Edquist, K.2009 The mars phoenix communications brownout during entry into the martian atmosphere. IPN Progress Report 42-179, pp. 1-20.
[45] Morabito, D. D., Schratz, B., Bruvold, K., Ilott, P., Edquist, K. & Cianciolo, A. D.2014 The mars science laboratory EDL communications brownout and blackout at UHF. IPN Progress Report 42-197, pp. 1-22.
[46] Munafò, A. & Magin, T. E.2014Modeling of stagnation-line nonequilibrium flows by means of quantum based collisional models. Phys. Fluids26, 097102.
[47] Noeding, P.2011 Review of physico-chemical \(\text{CO}_2\) modelling and recommendation for improvement. Tech. Rep. SPA.2010.3.2-04. DLR, SACOMAR.
[48] Panesi, M. & Lani, A.2013Collisional radiative coarse-grain model for ionization in air. Phys. Fluids25, 057101.
[49] Panesi, M., Lani, A., Magin, T., Pinna, F., Chazot, O. & Deconinck, H.2007 Numerical investigation of the non equilibrium shock-layer around the expert vehicle. In AIAA Paper 2007-4317. 38th AIAA Plasmadynamics and Lasers Conference, Miami, Florida.
[50] Park, C.1989Nonequilibrium Hypersonic Aerothermodynamics. Wiley-Interscience.
[51] Park, C.1993Review of chemical-kinetic problems of future NASA missions, I: earth entries. J. Thermophys. Heat Transfer7 (3), 385-398.
[52] Park, C., Howe, J. T., Jaffe, R. L. & Candler, G. V.1994Review of chemical-kinetic problems of future NASA missions, II: mars entries. J. Thermophys. Heat Transfer8 (1), 9-23.
[53] Portigliotti, S.2017 ExoMars 2016 Schiaparelli mission real time telemetry and post-flight results. In 14th International Planetary Probe Workshop.
[54] Portigliotti, S., Dumontel, M., Capuano, M. & Lorenzoni, L.2010 Landing site targeting and constraints for EXOMARS 2016 mission. In 7th International Planetary Probe Workshop.
[55] Ramjatan, S., Magin, T., Scholz, T., Van Der Haegen, V. & Thoemel, J.2016Blackout analysis of small cone-shaped reentry vehicles. J. Thermophys. Heat Transfer31 (2), 269-282.
[56] Ren, X., Yuan, J., He, B., Zhang, M. & Cai, G.2019Grid criteria for numerical simulation of hypersonic aerothermodynamics in transition regime. J. Fluid Mech.881, 585-601. · Zbl 1430.76354
[57] Rini, P., Magin, T., Degrez, G. & Fletcher, D.2003Numerical simulation of non-equilibrium hypersonic \(\text{CO}_2\) flows for mars entry application. In Radiation of High Temperature Gases in Atmospheric Entry, vol. 533, pp. 171-180.
[58] Scoggins, J. B., Leroy, V., Bellas-Chatzigeorgis, G., Dias, B. & Magin, T. E.2020Mutation^++: MUlticomponent Thermodynamic And Transport properties for IONized gases in C++. SoftwareX12, 100575.
[59] Singh, N. & Schwartzentruber, T. E.2017Aerothermodynamic correlations for high-speed flow. J. Fluid Mech.821, 421-439. · Zbl 1383.76413
[60] Takahashi, Y., Nakasato, R. & Oshima, N.2016Analysis of radio frequency blackout for a blunt-body capsule in atmospheric reentry missions. Aerospace3 (2), 19.
[61] Takahashi, Y., Yamada, K. & Abe, T.2014aExamination of radio frequency blackout for an inflatable vehicle during atmospheric reentry. J. Spacecr. Rockets51 (2), A32539.
[62] Takahashi, Y., Yamada, K. & Abe, T.2014bPrediction performance of blackout and plasma attenuation in atmospheric reentry demonstrator mission. J. Spacecr. Rockets51 (6), A32880.
[63] 2013Tecplot 360 User’s Manual, release 1 edn.Tecplot Inc.
[64] Tolker-Nielsen, T.2017 EXOMARS2016-Schiaparelli Anomaly Inquiry. Tech. Rep. European Space Agency (ESA).
[65] Vecchi, C., Sabbadini, M., Maggiora, R. & Siciliano, A.2004 Modelling of antenna radiation pattern of a re-entry vehicle in presence of plasma. In Antennas and Propagation Society International Symposium, 2004. IEEE, vol. 1, pp. 181-184. IEEE.
[66] Venkatakrishnan, V.1993 On the accuracy of limiters and convergence to steady state solutions. In 31st AIAA, Aerospace Sciences Meeting and Exhibit. AIAA.
[67] Wright, M. J., Olejniczak, J., Edquist, K. T., Venkatapathy, E. & Hollis, B. R.2006 Status of aerothermal modeling for current and future mars exploration missions. In 2006 IEEE Aerospace Conference. IEEE.
[68] Younis, M. Y., Sohail, M. A., Rahman, T., Muhammad, Z. & Bakaul, S. R.2011Applications of AUSM \(+\) scheme on subsonic, supersonic and hypersonic flows fields. Intl J. Aerosp. Mech. Engng5 (1), 21-27.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.