×

zbMATH — the first resource for mathematics

Versatile mixed methods for the incompressible Navier-Stokes equations. (English) Zbl 1453.76066
Summary: In the spirit of the “Principle of equipresence” introduced by C. Truesdell and R. Toupin [“The classical field theories”, in: Principles of classical mechanics and field theory. Berlin, Heidelberg: Springer Verlag. 226–858 (1960; u+\nabla\boldsymbol{u}^T-\frac{2}{3}(\nabla\cdot\boldsymbol{u})\mathbb{I}\right)\) which was originally derived for compressible flows, instead of the classical incompressible stress tensor \(\nu\nabla\boldsymbol{u}\). (Note that, here \(\nu\) is the dynamic viscosity coefficient, and \(\boldsymbol{u}\) is the velocity field.) In our approach, the divergence-free constraint for the viscous stress term is not enforced ahead of discretization. Instead, our formulation allows the scheme itself to “choose” a consistent way to interpret the divergence-free constraint: i.e., the divergence-free constraint is interpreted (or enforced) in a consistent fashion in both the mass conservation equation and the stress tensor term (in the momentum equation). Furthermore, our approach preserves the original symmetrical properties of the stress tensor, e.g. its rotational invariance, and it remains physically correct in the context of compressible flows. As a result, our approach facilitates versatility and code reuse. In this paper, we introduce our approach and establish some important mathematical properties for the resulting class of finite element schemes. More precisely, for general mixed methods, which are not necessarily pointwise divergence-free, we establish the existence of a new norm induced by the full, viscous bilinear form. Thereafter, we prove the coercivity of the viscous bilinear form and the semi-coercivity of a convective trilinear form. In addition, we demonstrate L2-stability of the discrete velocity fields for the general class of methods and (by deduction) the \(H(\mathrm{div})\)-conforming methods. Finally, we run some numerical experiments to illustrate the behavior of the versatile mixed methods, and we make careful comparisons with a conventional \(H(\mathrm{div})\)-conforming scheme.
MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
Software:
FEniCS; MOOSE; SyFi
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] John, V.; Linke, A.; Merdon, C.; Neilan, M.; Rebholz, L. G., On the divergence constraint in mixed finite element methods for incompressible flows, SIAM Rev., 59, 3, 492-544 (2017) · Zbl 1426.76275
[2] Franca, L. P.; Hughes, T. J., Two classes of mixed finite element methods, Comput. Methods Appl. Mech. Engrg., 69, 1, 89-129 (1988) · Zbl 0629.73053
[3] Olshanskii, M.; Reusken, A., Grad-div stablilization for Stokes equations, Math. Comp., 73, 248, 1699-1718 (2004) · Zbl 1051.65103
[4] Olshanskii, M.; Lube, G.; Heister, T.; Löwe, J., Grad-div stabilization and subgrid pressure models for the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 198, 49-52, 3975-3988 (2009) · Zbl 1231.76161
[5] Gelhard, T.; Lube, G.; Olshanskii, M. A.; Starcke, J.-H., Stabilized finite element schemes with LBB-stable elements for incompressible flows, J. Comput. Appl. Math., 177, 2, 243-267 (2005) · Zbl 1063.76054
[6] Braack, M.; Burman, E.; John, V.; Lube, G., Stabilized finite element methods for the generalized Oseen problem, Comput. Methods Appl. Mech. Engrg., 196, 4-6, 853-866 (2007) · Zbl 1120.76322
[7] Case, M. A.; Ervin, V. J.; Linke, A.; Rebholz, L. G., A connection between Scott-Vogelius and grad-div stabilized Taylor-Hood FE approximations of the Navier-Stokes equations, SIAM J. Numer. Anal., 49, 4, 1461-1481 (2011) · Zbl 1244.76021
[8] Jenkins, E. W.; John, V.; Linke, A.; Rebholz, L. G., On the parameter choice in grad-div stabilization for the Stokes equations, Adv. Comput. Math., 40, 2, 491-516 (2014) · Zbl 1426.76272
[9] John, V., Finite Element Methods for Incompressible Flow Problems (2016), Springer · Zbl 1358.76003
[10] Burman, E.; Linke, A., Stabilized finite element schemes for incompressible flow using Scott-Vogelius elements, Appl. Numer. Math., 58, 11, 1704-1719 (2008) · Zbl 1148.76031
[11] Cockburn, B.; Kanschat, G.; Schötzau, D., A locally conservative LDG method for the incompressible Navier-Stokes equations, Math. Comp., 74, 251, 1067-1095 (2005) · Zbl 1069.76029
[12] Guzmán, J.; Shu, C.-W.; Sequeira, F. A., H-(div) conforming and DG methods for incompressible Euler’s equations, IMA J. Numer. Anal., 37, 4, 1733-1771 (2016) · Zbl 1433.76085
[13] Linke, A., On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime, Comput. Methods Appl. Mech. Engrg., 268, 782-800 (2014) · Zbl 1295.76007
[14] Linke, A.; Merdon, C., Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 311, 304-326 (2016) · Zbl 1439.76083
[15] Boffi, D.; Brezzi, F.; Fortin, M., Mixed Finite Element Methods and Applications, Vol. 44 (2013), Springer
[16] Schroeder, P. W.; Lube, G., Divergence-free H(div)-FEM for time-dependent incompressible flows with applications to high Reynolds number vortex dynamics, J. Sci. Comput., 1-29 (2018)
[17] Schroeder, P. W.; Lehrenfeld, C.; Linke, A.; Lube, G., Towards computable flows and robust estimates for inf-sup stable FEM applied to the time-dependent incompressible Navier-Stokes equations, SeMA J. Bol. Soc. Esp. Mat. Apl., 75, 4, 629-653 (2018) · Zbl 1421.35253
[18] Zhang, S., A new family of stable mixed finite elements for the 3D Stokes equations, Math. Comp., 74, 250, 543-554 (2005) · Zbl 1085.76042
[19] Falk, R. S.; Neilan, M., Stokes complexes and the construction of stable finite elements with pointwise mass conservation, SIAM J. Numer. Anal., 51, 2, 1308-1326 (2013) · Zbl 1268.76032
[20] Guzmán, J.; Neilan, M., Conforming and divergence-free Stokes elements on general triangular meshes, Math. Comp., 83, 285, 15-36 (2014) · Zbl 1322.76041
[21] Lehrenfeld, C.; Schöberl, J., High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows, Comput. Methods Appl. Mech. Engrg., 307, 339-361 (2016) · Zbl 1439.76081
[22] Majda, A. J.; Bertozzi, A. L., Vorticity and Incompressible Flow, Vol. 27 (2002), Cambridge University Press · Zbl 0983.76001
[23] Palha, A.; Gerritsma, M., A mass, energy, enstrophy and vorticity conserving (MEEVC) mimetic spectral element discretization for the 2D incompressible Navier-Stokes equations, J. Comput. Phys., 328, 200-220 (2017) · Zbl 1406.76064
[24] Coppola, G.; Capuano, F.; de Luca, L., Discrete energy-conservation properties in the numerical simulation of the Navier-Stokes equations, Appl. Mech. Rev., 71, 1, Article 010803 pp. (2019)
[25] Schroeder, P. W.; Lube, G., Pressure-robust analysis of divergence-free and conforming FEM for evolutionary incompressible Navier-Stokes flows, J. Numer. Math., 25, 4, 249-276 (2017) · Zbl 1388.76151
[26] Charnyi, S.; Heister, T.; Olshanskii, M. A.; Rebholz, L. G., On conservation laws of Navier-Stokes Galerkin discretizations, J. Comput. Phys., 337, 289-308 (2017) · Zbl 1415.65222
[27] Charnyi, S.; Heister, T.; Olshanskii, M. A.; Rebholz, L. G., Efficient discretizations for the EMAC formulation of the incompressible Navier-Stokes equations, Appl. Numer. Math., 141, 220-233 (2018) · Zbl 07074572
[28] Charnyi, S., The EMAC Scheme for Navier-Stokes Simulations, and Application to Flow Past Bluff Bodies (2018), Clemson University, (Ph.D. thesis)
[29] Lehmkuhl, O.; Houzeaux, G.; Owen, H.; Chrysokentis, G.; Rodriguez, I., A low-dissipation finite element scheme for scale resolving simulations of turbulent flows, J. Comput. Phys., 390, 1, 51-65 (2019)
[30] Arnold, D. N.; Winther, R., Mixed finite elements for elasticity, Numer. Math., 92, 3, 401-419 (2002) · Zbl 1090.74051
[31] Arnold, D.; Awanou, G.; Winther, R., Finite elements for symmetric tensors in three dimensions, Math. Comp., 77, 263, 1229-1251 (2008) · Zbl 1285.74013
[32] Hu, J.; Zhang, S., A family of conforming mixed finite elements for linear elasticity on triangular grids (2014), arXiv preprint arXiv:1406.7457
[33] Hu, J.; Man, H.; Zhang, S., A simple conforming mixed finite element for linear elasticity on rectangular grids in any space dimension, J. Sci. Comput., 58, 2, 367-379 (2014) · Zbl 1296.65159
[34] Cockburn, B.; Fu, G., Devising superconvergent HDG methods with symmetric approximate stresses for linear elasticity by M-decompositions, IMA J. Numer. Anal., 38, 2, 566-604 (2017) · Zbl 06983825
[35] Arnold, D. N.; Winther, R., Nonconforming mixed elements for elasticity, Math. Models Methods Appl. Sci., 13, 03, 295-307 (2003) · Zbl 1057.74036
[36] Gopalakrishnan, J.; Guzmán, J., Symmetric nonconforming mixed finite elements for linear elasticity, SIAM J. Numer. Anal., 49, 4, 1504-1520 (2011) · Zbl 1237.74174
[37] Cockburn, B.; Fu, G.; Qiu, W., A note on the devising of superconvergent HDG methods for Stokes flow by M-decompositions, IMA J. Numer. Anal., 37, 2, 730-749 (2017) · Zbl 1433.76077
[38] Giacomini, M.; Karkoulias, A.; Sevilla, R.; Huerta, A., A superconvergent HDG method for Stokes flow with strongly enforced symmetry of the stress tensor, J. Sci. Comput., 77, 3, 1679-1702 (2018) · Zbl 1404.76162
[39] Brooks, A. N.; Hughes, T. J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32, 1-3, 199-259 (1982) · Zbl 0497.76041
[40] Tezduyar, T. E., Stabilized finite element formulations for incompressible flow computations, (Advances in Applied Mechanics, Vol. 28 (1991), Elsevier), 1-44 · Zbl 0747.76069
[41] Hong, Q.; Kraus, J.; Xu, J.; Zikatanov, L., A robust multigrid method for discontinuous Galerkin discretizations of Stokes and linear elasticity equations, Numer. Math., 132, 1, 23-49 (2016) · Zbl 1338.76054
[42] Hong, Q.; Kraus, J., Uniformly stable discontinuous Galerkin discretization and robust iterative solution methods for the Brinkman problem, SIAM J. Numer. Anal., 54, 5, 2750-2774 (2016) · Zbl 1346.76068
[43] Gresho, P. M.; Sani, R. L., Incompressible Flow and the Finite Element Method, Volume Two: Isothermal Laminar Flow (1998), Wiley · Zbl 0941.76002
[44] Evans, J. A., Divergence-Free B-spline Discretizations for Viscous Incompressible Flows (2011), University of Texas at Austin, (Ph.D. thesis)
[45] Evans, J. A.; Hughes, T. J.R., Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations, J. Comput. Phys., 241, 141-167 (2013) · Zbl 1349.76054
[46] Schlichting, H.; Gersten, K., Boundary-Layer Theory (2016), Springer
[47] Peterson, J. W.; Lindsay, A. D.; Kong, F., Overview of the incompressible Navier-Stokes simulation capabilities in the MOOSE framework, Adv. Eng. Softw., 119, 68-92 (2018)
[48] Allaire, G., Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation (2007), Oxford University Press · Zbl 1120.65001
[49] Schirra, O. D., New Korn-type inequalities and regularity of solutions to linear elliptic systems and anisotropic variational problems involving the trace-free part of the symmetric gradient, Calc. Var. Partial Differential Equations, 43, 1-2, 147-172 (2012) · Zbl 1233.35062
[50] Breit, D.; Cianchi, A.; Diening, L., Trace-free Korn inequalities in Orlicz spaces, SIAM J. Math. Anal., 49, 4, 2496-2526 (2017) · Zbl 1380.46028
[51] Di Pietro, D. A.; Ern, A., Mathematical Aspects of Discontinuous Galerkin Methods, Vol. 69 (2011), Springer Science & Business Media: Springer Science & Business Media Berlin Heidelberg
[52] Dallmann, H.; Arndt, D.; Lube, G., Local projection stabilization for the Oseen problem, IMA J. Numer. Anal., 36, 2, 796-823 (2015) · Zbl 1433.76079
[53] Logg, A.; Mardal, K.-A.; Wells, G., Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book, Vol. 84 (2012), Springer Science & Business Media
[54] Alnaes, M. S.; Blechta, J.; Hake, J.; Johansson, A.; Kehlet, B.; Logg, A.; Richardson, C.; Ring, J.; Rognes, M. E.; Wells, G. N., The FEniCS project version 1.5, Arch. Numer. Softw., 3, 100, 9-23 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.