zbMATH — the first resource for mathematics

A constrained pressure-temperature residual (CPTR) method for non-isothermal multiphase flow in porous media. (English) Zbl 1452.76101
Summary: For both isothermal and thermal petroleum reservoir simulation, the constrained pressure residual (CPR) method is the industry-standard preconditioner. This method is a two-stage process involving the solution of a restricted pressure system. While initially designed for the isothermal case, CPR is also the standard for thermal cases. However, its treatment of the energy conservation equation does not incorporate heat diffusion, which is often dominant in thermal cases. In this paper, we present an extension of CPR: the constrained pressure-temperature residual (CPTR) method, where a restricted pressure-temperature system is solved in the first stage. In previous work, we introduced a block preconditioner with an efficient Schur complement approximation for a pressure-temperature system. Here, we extend this method for multiphase flow as the first stage of CPTR. The algorithmic performance of different two-stage preconditioners is evaluated for reservoir simulation test cases.
Reviewer: Reviewer (Berlin)
76M10 Finite element methods applied to problems in fluid mechanics
65F08 Preconditioners for iterative methods
65F10 Iterative numerical methods for linear systems
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage
Full Text: DOI
[1] M. S. Aln\aes, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells, Unified form language: A domain-specific language for weak formulations of partial differential equations, ACM Trans. Math. Software, 40 (2014), p. 9. · Zbl 1308.65175
[2] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, PETSc Web Page, 2017, http://www.mcs.anl.gov/petsc.
[3] T. Bennison, Prediction of Heavy Oil Viscosity, presented at the IBC Heavy Oil Field Development Conference, Vol. 2, 1998, p. 4.
[4] Q. M. Bui, H. C. Elman, and J. D. Moulton, Algebraic multigrid preconditioners for multiphase flow in porous media, SIAM J. Sci. Comput., 39 (2017), pp. S662-S680. · Zbl 1392.65024
[5] Q. M. Bui, L. Wang, and D. Osei-Kuffuor, Algebraic multigrid preconditioners for two-phase flow in porous media with phase transitions, Adv. Water Res,, 114 (2018), pp. 19-28.
[6] Z. Chen and Y. Zhang, Well flow models for various numerical methods, Int. J. Numer. Anal. Model., 6 (2009). · Zbl 1158.76393
[7] M. A. Christie and M. J. Blunt, Tenth SPE comparative solution project: A comparison of upscaling techniques, in SPE Reservoir Simulation Symposium, Society of Petroleum Engineers, Richardson, TX, 2001.
[8] T. Clees, AMG Strategies for PDE Systems with Applications in Industrial Semiconductor Simulation, Ph.D. thesis, University of Köln, 2005.
[9] T. Clees and L. Ganzer, An efficient algebraic multigrid solver strategy for adaptive implicit methods in oil-reservoir simulation, SPE J., 15 (2010), pp. 670-681.
[10] K. H. Coats, In-situ combustion model, Soc. Petroleum Engrs. J., 20 (1980), pp. 533-554.
[11] M. A. Cremon, N. Castelletto, and J. A. White, Multi-Stage Preconditioners for Thermal-Compositional-Reactive Flow in Porous Media, preprint, arXiv:1912.04385, 2019.
[12] H. Darcy, Les fontaines publiques de la ville de Dijon, Victor Dalmont, 1856.
[13] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, Oxford University Press, New York, 2014. · Zbl 1304.76002
[14] R. Eymard, T. Gallouët, and R. Herbin, Finite volume methods, Handb. Numer. Anal., 7 (2000), pp. 713-1018. · Zbl 0981.65095
[15] R. D. Falgout and U. M. Yang, HYPRE: A library of high performance preconditioners, in International Conference on Computational Science, Springer, New York, 2002, pp. 632-641. · Zbl 1056.65046
[16] M. W. Gee, C. M. Siefert, J. J. Hu, R. S. Tuminaro, and M. G. Sala, ML \(5.0\) Smoothed Aggregation User’s Guide, Technical report SAND2006-2649, Sandia National Laboratories, Albuquerque, NM, 2006.
[17] J. W. Grabowski, P. K. Vinsome, R. C. Lin, G. Behie, and B. Rubin, A fully implicit general purpose finite-difference thermal model for in situ combustion and steam, in SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, Richardson, TX, 1979.
[18] S. Gries, System-AMG Approaches for Industrial Fully and Adaptive Implicit Oil Reservoir Simulations, Ph.D. thesis, University of Köln, 2015.
[19] S. Gries, K. Stüben, G. L. Brown, D. Chen, and D. A. Collins, Preconditioning for efficiently applying algebraic multigrid in fully implicit reservoir simulations, SPE J., 19 (2014), pp. 726-736.
[20] V. E. Henson and U. M. Yang, BoomerAMG: A parallel algebraic multigrid solver and preconditioner, Appl. Numer. Math., 41 (2002), pp. 155-177. · Zbl 0995.65128
[21] P. Jenny, S. H. Lee, and H. A. Tchelepi, Adaptive fully implicit multi-scale finite-volume method for multi-phase flow and transport in heterogeneous porous media, J. Comput. Phys., 217 (2006), pp. 627-641. · Zbl 1160.76373
[22] G. S. Kell, Density, thermal expansivity, and compressibility of liquid water from 0. deg. to 150. deg. correlations and tables for atmospheric pressure and saturation reviewed and expressed on \(1968\) temperature scale, J. Chem. Eng. Data, 20 (1975), pp. 97-105.
[23] R. C. Kirby and L. Mitchell, Solver composition across the PDE/linear algebra barrier, SIAM J. Sci. Comput., 40 (2018), pp. C76-C98. · Zbl 1383.65021
[24] S. Lacroix, Y. V. Vassilevski, J. Wheeler, and M. F. Wheeler, Iterative solution methods for modeling multiphase flow in porous media fully implicitly, SIAM J. Sci. Comput., 25 (2003), pp. 905-926. · Zbl 1163.65310
[25] S. Lacroix, Y. V. Vassilevski, and M. F. Wheeler, Iterative Solvers of the Implicit Parallel Accurate Reservoir Simulator (IPARS), I: Single Processor Case, TICAM report 00-28, University of Texas, Austin, 2000.
[26] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Vol. 31, Cambridge University Press, Cambridge, 2002. · Zbl 1010.65040
[27] J. A. Meijerink and H. A. van der Vorst, An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix, Math. Comp., 31 (1977), pp. 148-162. · Zbl 0349.65020
[28] M. Muskat and M. W. Meres, The flow of heterogeneous fluids through porous media, Physics, 7 (1936), pp. 346-363. · JFM 62.1565.01
[29] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Series on Computational Methods in Mechanics and Thermal Science, Hemisphere Publishing Corporation (CRC Press, Taylor & Francis Group), Washington, DC, 1980.
[30] D. W. Peaceman, Interpretation of well-block pressures in numerical reservoir simulation (includes associated paper 6988), Soc. Petroleum Engrg. J., 18 (1978), pp. 183-194.
[31] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T. McRae, G.-T. Bercea, G. R. Markall, and P. H. J. Kelly, Firedrake: Automating the finite element method by composing abstractions, ACM Trans. Math. Software, 43 (2016), p. 24. · Zbl 1396.65144
[32] B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation, SIAM, Philadelphia, 2008. · Zbl 1153.65112
[33] T. Roy, Preconditioning for Thermal Reservoir Simulation, D.Phil. thesis, Oxford University, Oxford, 2019.
[34] T. Roy, T. B. Jönsthövel, C. Lemon, and A. J. Wathen, A block preconditioner for non-isothermal flow in porous media, J. Comput. Phys., 395 (2019), pp. 636-652.
[35] J. W. Ruge, AMG for problems of elasticity, Appl. Math. Comput., 19 (1986), pp. 293-309. · Zbl 0605.73083
[36] J. W. Ruge and K. Stüben, Algebraic multigrid, in Multigrid Methods, Frontiers in Applied Mathematics 3, SIAM, Philadelphia, 1987, pp. 73-130.
[37] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, 2003. · Zbl 1031.65046
[38] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869. · Zbl 0599.65018
[39] A. Sahni, M. Kumar, and R. B. Knapp, Electromagnetic heating methods for heavy oil reservoirs, in SPE/AAPG Western Regional Meeting, Society of Petroleum Engineers, Richardson, TX, 2000.
[40] R. Scheichl, R. Masson, and J. Wendebourg, Decoupling and block preconditioning for sedimentary basin simulations, Comput. Geosci., 7 (2003), pp. 295-318. · Zbl 1076.76070
[41] K. Stüben, An introduction to algebraic multigrid, in Multigrid, U. Trottenberg, C. W. Oosterlee, and A. Schuller, eds., Academic Press, New York, 2001, pp. 413-532.
[42] J. R. Wallis, Incomplete Gaussian elimination as a preconditioning for generalized conjugate gradient acceleration, in SPE Reservoir Simulation Symposium, Society of Petroleum Engineers, Richardson, TX, 1983.
[43] J. R. Wallis, R. P. Kendall, and T. E. Little, Constrained residual acceleration of conjugate residual methods, in SPE Reservoir Simulation Symposium, Society of Petroleum Engineers, Richardson, TX, 1985.
[44] L. Wang, D. Osei-Kuffuor, R. Falgout, I. Mishev, and J. Li, Multigrid reduction for coupled flow problems with application to reservoir simulation, in SPE Reservoir Simulation Conference, Society of Petroleum Engineers, Richardson, TX, 2017.
[45] Z. Y. Wong, Sequential-Implicit Newton’s Method for Geothermal Reservoir Simulation, Ph.D. thesis, Stanford University, Stanford, CA, 2018.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.