The deal.II library, version 9.2. (English) Zbl 1452.65222

Summary: This paper provides an overview of the new features of the finite element library deal.II, version 9.2.


65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65Y05 Parallel numerical computation
65-04 Software, source code, etc. for problems pertaining to numerical analysis
Full Text: DOI


[1] G. Alzetta, D. Arndt, W. Bangerth, V. Boddu, B. Brands, D. Davydov, R. Gassmoeller, T. Heister, L. Heltai, K. Kormann, M. Kronbichler, M. Maier, J.-P. Pelteret, B. Turcksin, and D. Wells, The deal.II library, Version 9.0, J. Numer. Math. 26 (2018), No. 4, 173-184. · Zbl 1410.65363
[2] P. R. Amestoy, I. S. Duf, J. Koster, and J.-Y. L’Excellent, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl. 23 (2001), No. 1, 15-41. · Zbl 0992.65018
[3] P. R. Amestoy, I. S. Duf, and J.-Y. L’Excellent, Multifrontal parallel distributed symmetric and unsymmetric solvers, Comput. Methods Appl. Mech. Engrg. 184 (2000), 501-520. · Zbl 0956.65017
[4] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet, Hybrid scheduling for the parallel solution of linear systems, Parallel Computing32 (2006), No. 2, 136-156.
[5] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’ Guide, third ed, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999. · Zbl 0934.65030
[6] D. Arndt, W. Bangerth, T. C. Clevenger, D. Davydov, M. Fehling, D. Garcia-Sanchez, G. Harper, T. Heister, L. Heltai, M. Kronbichler, R. M. Kynch, M. Maier, J.-P. Pelteret, B. Turcksin, and D. Wells, The deal.II library, Version 9.1, J. Numer. Math. 27 (2019), No. 4, 203-213. · Zbl 1435.65010
[7] D. Arndt, W. Bangerth, D. Davydov, T. Heister, L. Heltai, M. Kronbichler, M. Maier, J.-P. Pelteret, B. Turcksin, and D. Wells, The deal.II inite element library: Design, features, and insights, Computers - Mathematics with Applicationsin press (2020).
[8] D. Arndt, N. Fehn, G. Kanschat, K. Kormann, M. Kronbichler, P. Munch, W. A. Wall, and J. Witte, ExaDG - high-order discontinuous Galerkin for the exa-scale, In: Software for Exascale Computing - SPPEXA 2016-2019 (Eds. H.-J. Bungartz, W. E. Nagel, S. Reiz, B. Uekermann, and Ph. Neumann), Lecture Notes in Computational Science and Engineering, Vol. 136, Springer, Cham, 2020.
[9] I. Babuška and M. Suri, The p- and h-p versions of the inite element method, an overview, Comp. Meth. Appl. Mechanics Engrg. 80 (1990), No. 1, 5-26. · Zbl 0731.73078
[10] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D. May, L. Curfman McInnes, R. Mills, T. Munson, K. Rupp, P. Sanan B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, PETSc Users Manual, Argonne National Laboratory, Report No. ANL-95/11 Revision 3.9, 2018.
[11] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D. May, L. Curfman McInnes, R. Mills, T. Munson, K. Rupp, P. Sanan B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, PETSc Web Page, http://www.mcs.anl.gov/petsc, 2018.
[12] W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler, Algorithms and data structures for massively parallel generic adaptive inite element codes, ACM Trans. Math. Softw. 38 (2011), 14/1-28. · Zbl 1365.65247
[13] W. Bangerth, R. Hartmann, and G. Kanschat, deal.II - a general purpose object oriented inite element library, ACM Trans. Math. Softw. 33 (2007), No. 4. · Zbl 1365.65248
[14] W. Bangerth and O. Kayser-Herold, Data Structures and Requirements for hp Finite Element Software, ACM Trans. Math. Softw. 36 (2009), No. 1, 4/1-4/31. · Zbl 1364.65237
[15] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley, ScaLAPACK Users’ Guide, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1997. · Zbl 0886.65022
[16] J. L. Blanco and P. K. Rai, Nanoflann: a C++ Header-Only Fork of FLANN, a Library for Nearest Neighbor (NN) with KD-Trees, https://github.com/jlblancoc/nanoflann, 2014.
[17] S. C. Brenner and L.-Y. Sung, C_0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains, J. Sci. Comp. 22-23 (2005), No. 1-3, 83-118. · Zbl 1071.65151
[18] C. Burstedde, L. C. Wilcox, and O. Ghattas, p4est: Scalable algorithms for parallel adaptive mesh reinement on forests of octrees, SIAM J. Sci. Comput. 33 (2011), No. 3, 1103-1133. · Zbl 1230.65106
[19] T. C. Clevenger and T. Heister, Comparison between Algebraic and Matrix-free Geometric Multigrid for a Stokes Problem, submitted (2019).
[20] T. C. Clevenger, T. Heister, G. Kanschat, and M. Kronbichler, A Flexible, Parallel, Adaptive Geometric Multigrid Method for FEM, arXiv:1904.03317, Report, 2019.
[21] CuSOLVER Library, https://docs.nvidia.com/cuda/cusolver/index.html.
[22] CuSPARSE Library, https://docs.nvidia.com/cuda/cusparse/index.html.
[23] T. A. Davis, Algorithm 832: UMFPACK V4.3-an unsymmetric-pattern multifrontal method, ACM Trans. Math. Softw. 30 (2004), 196-199. · Zbl 1072.65037
[24] D. Davydov, T. Gerasimov, J.-P. Pelteret, and P. Steinmann, Convergence study of the h-adaptive PUM and the hp-adaptive FEM applied to eigenvalue problems in quantum mechanics, Adv. Modeling Simul. Engrg. Sci. 4 (2017), No. 1, 7.
[25] A. DeSimone, L. Heltai, and C. Manigrasso, Tools for the Solution of PDEs Deined on Curved Manifolds with Deal.II, SISSA, Report No. 42/2009/M, 2009.
[26] T. Eibner and J. M. Melenk, An adaptive strategy for hp-FEM based on testing for analyticity, Comp. Mechanics39 (2007), No. 5, 575-595. · Zbl 1163.65331
[27] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth, F. Rossi, and R. Ulerich, GNU Scientiic Library Reference Manual (Edition 2.3), 2016.
[28] R. Gassmöller, H. Lokavarapu, E. Heien, E. Gerry Puckett, and W. Bangerth, Flexible and scalable particle-in-cell methods with adaptive mesh reinement for geodynamic computations, Geochemistry, Geophysics, Geosystems19 (2018), No. 9, 3596-3604.
[29] C. Geuzaine and J.-F. Remacle, Gmsh: A 3-D inite element mesh generator with built-in pre-and post-processing facilities, Int. J. Numer. Methods Engrg. 79 (2009), No. 11, 1309-1331. · Zbl 1176.74181
[30] Ginkgo: High-Performance Linear Algebra Library for Manycore Systems, https://github.com/ginkgo-project/ginkgo.
[31] N. Giuliani, A. Mola, and L. Heltai, π-BEM: A flexible parallel implementation for adaptive, geometry aware, and high order boundary element methods, Adv. Engrg. Software121 (2018), No. March, 39-58.
[32] W. J. Gordon and L. C. Thiel, Transinite mappings and their application to grid generation, Appl. Math. Comput. 10 (1982), 171-233.
[33] A. Griewank, D. Juedes, and J. Utke, Algorithm 755: ADOL-C: a package for the automatic diferentiation of algorithms written in C/C++, ACM Trans. Math. Software22 (1996), No. 2, 131-167. · Zbl 0884.65015
[34] L. Heltai, W. Bangerth, M. Kronbichler, and A. Mola, Using Exact Geometry Information in Finite Element Computations, arXiv:1910.09824, Report, 2019.
[35] V. Hernandez, J. E. Roman, and V. Vidal, SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems, ACM Trans. Math. Software31 (2005), No. 3, 351-362. · Zbl 1136.65315
[36] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stanley, An overview of the Trilinos project, ACM Trans. Math. Softw. 31 (2005), 397-423. · Zbl 1136.65354
[37] M. A. Heroux et al., Trilinos Web Page, 2018, http://trilinos.org.
[38] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S. Woodward, SUNDIALS: Suite of nonlinear and diferential/algebraic equation solvers, ACM Trans. Math. Software31 (2005), No. 3, 363-396. · Zbl 1136.65329
[39] T. Hoefler, C. Siebert, and A. Lumsdaine, Scalable communication protocols for dynamic sparse data exchange, ACM Sigplan Notices45 (2010), No. 5, 159-168.
[40] P. Houston, B. Senior, and E. Süli, Sobolev regularity estimation for hp-adaptive inite element methods, In: Numerical Mathematics and Advanced Applications (Eds. F. Brezzi, A. Bufa, S. Corsaro, and A. Murli), pp. 631-656, Springer, Milan, 2003. · Zbl 1043.65114
[41] P. Houston and E. Süli, A note on the design of hp-adaptive inite element methods for elliptic partial diferential equations, Comp. Meth. Appl. Mechanics Engrg. 194 (2005), No. 2, 229-243. · Zbl 1074.65131
[42] B. Janssen and G. Kanschat, Adaptive multilevel methods with local smoothing for H1- and Hcurl-conforming high order inite element methods, SIAM J. Sci. Comput. 33 (2011), No. 4, 2095-2114. · Zbl 1230.65133
[43] G. Kanschat, Multi-level methods for discontinuous Galerkin FEM on locally reined meshes, Comput. - Struct. 82 (2004), No. 28, 2437-2445.
[44] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput. 20 (1998), No. 1, 359-392. · Zbl 0915.68129
[45] M. Kronbichler and K. Kormann, A generic interface for parallel cell-based inite element operator application, Comput. Fluids63 (2012), 135-147. · Zbl 1365.76121
[46] M. Kronbichler and K. Kormann, Fast matrix-free evaluation of discontinuous Galerkin inite element operators, ACM Trans. Math. Soft. 45 (2019), No. 3, 29:1-29:40. · Zbl 07193378
[47] M. Kronbichler and W. A. Wall, A performance comparison of continuous and discontinuous Galerkin methods with fast multigrid solvers, SIAM J. Sci. Comput. 40 (2018), No. 5, A3423-A3448. · Zbl 1402.65163
[48] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, SIAM, Philadelphia, 1998. · Zbl 0901.65021
[49] List of Changes for 9.2, https://www.dealii.org/developer/doxygen/deal.II/changes_between_9_1_1_and_9_2_0.html.
[50] M. Maier, M. Bardelloni, and L. Heltai, Linear Operator – a generic, high-level expression syntax for linear algebra, Comp. Math. Appl. 72 (2016), No. 1, 1-24. · Zbl 1443.65003
[51] M. Maier, M. Bardelloni, and L. Heltai, LinearOperator Benchmarks, Version 1.0.0, 2016.
[52] C. Mavriplis, Adaptive mesh strategies for the spectral element method, Comp. Meth. Appl. Mech. Engrg. 116 (1994), No. 1, 77-86. · Zbl 0826.76070
[53] J. M. Melenk and B. I. Wohlmuth, On residual-based a posteriori error estimation in hp-FEM, Adv. Comp. Math. 15 (2001), No. 1-4, 311-331. · Zbl 0991.65111
[54] MUMPS: a MUltifrontal Massively Parallel Sparse Direct Solver, http://graal.ens-lyon.fr/MUMPS/.
[55] P. Munch, K. Kormann, and M. Kronbichler, Hyper.deal: An Eicient, Matrix-Free Finite-Element Library for High-Dimensional Partial Diferential Equations, arXiv:2002.08110, Report, 2020.
[56] Muparser: Fast Math Parser Library, http://muparser.beltoforion.de/.
[57] OpenCASCADE: Open CASCADE Technology, 3D Modeling - Numerical Simulation, http://www.opencascade.org/.
[58] J. Reinders, Intel Threading Building Blocks, O’Reilly, 2007.
[59] R. Rew and G. Davis, NetCDF: an interface for scientiic data access, Computer Graphics and Applications, IEEE10 (1990), No. 4, 76-82.
[60] D. Ridzal and D. P. Kouri, Rapid Optimization Library, Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States), Report, 2014.
[61] A. Sartori, N. Giuliani, M. Bardelloni, and L. Heltai, deal2lkit: A toolkit library for high performance programming in deal.II, SoftwareX7 (2018), 318-327.
[62] T. Schulze, A. Gessler, K. Kulling, D. Nadlinger, J. Klein, M. Sibly, and M. Gubisch, Open asset import library (assimp), Comp. Software (2012), https://github.com/assimp/assimp.
[63] SymEngine: Fast Symbolic Manipulation Library, Written in C++, https://github.com/symengine/symengine, http://sympy.org/.
[64] The HDF Group, Hierarchical Data Format, Version 5, 1997-2018, http://www.hdfgroup.org/HDF5/.
[65] B. Turcksin, M. Kronbichler, and W. Bangerth, WorkStream – a design pattern for multicore-enabled inite element computations, ACM Trans. Math. Software43 (2016), No. 1, 2/1-2/29. · Zbl 1396.65145
[66] A. Walther and A. Griewank, Getting started with ADOL-C, In: Combinatorial Scientiic Computing (Eds. U. Naumann and O.Schenk), Chapman-Hall CRC Computational Science, pp. 181-202, 2012.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.