Hong, Qianyu; Yang, Yang On critical fractional systems with Hardy-Littlewood-Sobolev nonlinearities. (English) Zbl 1471.35005 Rocky Mt. J. Math. 50, No. 5, 1661-1683 (2020). The authors study the following critical fractional Laplacian system with Choquard type nonlinearities: \[ \left\{ \begin{array} [c]{lll} (-\Delta)^s u=k_1\displaystyle\left(\int_{\mathbb{R}^N}\frac{|u(y)|^{2_\mu^*}}{|x-y|^\mu}\right)|u|^{2_\mu^*-2}u+\frac{\alpha\gamma}{^{2_\mu^*}}\left(\int_{\mathbb{R}^N}\frac{|v(y)|^{\beta}}{|x-y|^\mu}\right)|u|^{\alpha-2}u & \mathrm{in} & \mathbb{R}^N,\\ (-\Delta)^s v=k_2\displaystyle\left(\int_{\mathbb{R}^N}\frac{|v(y)|^{2_\mu^*}}{|x-y|^\mu}\right)|v|^{2_\mu^*-2}v+\frac{\beta\gamma}{^{2_\mu^*}}\left(\int_{\mathbb{R}^N}\frac{|u(y)|^{\alpha}}{|x-y|^\mu}\right)|v|^{\beta-2}v & \mathrm{in} & \mathbb{R}^N, \end{array} \right. \] where \(s\in(0,1)\), \(N>2s\), \(k_1,k_2>0\), \(\gamma\neq 0\), \(\mu\in(0,N)\), \(\alpha,\beta>1\) and \(2_\mu^*=(2N-\mu)/(N-2s)\) is the fractional upper critical exponent in the Hardy-Littlewood-Sobolev inequality. By using minimization techniques over the Nehari set they provide existence and non-existence of solutions, for certain regions of parameters \((\alpha,\beta)\). Reviewer: Kaye Silva (Goiânia) Cited in 1 Document MSC: 35A15 Variational methods applied to PDEs 35R09 Integro-partial differential equations 35R11 Fractional partial differential equations 35B33 Critical exponents in context of PDEs 35J47 Second-order elliptic systems 35J62 Quasilinear elliptic equations Keywords:Nehari manifold; fractional Laplacian; Choquard equation; Hardy-Littlewood-Sobolev critical exponent; fractional upper critical exponent PDF BibTeX XML Cite \textit{Q. Hong} and \textit{Y. Yang}, Rocky Mt. J. Math. 50, No. 5, 1661--1683 (2020; Zbl 1471.35005) Full Text: DOI Euclid OpenURL References: [1] D. Applebaum, “Lévy processes - from probability to finance and quantum groups”, Notices Amer. Math. Soc. 51:11 (2004), 1336-1347. Mathematical Reviews (MathSciNet): MR2105239 Zentralblatt MATH: 1053.60046 · Zbl 1053.60046 [2] J. Bertoin, Lévy processes, Cambridge Tracts in Mathematics 121, Cambridge University Press, 1996. Mathematical Reviews (MathSciNet): MR1406564 Zentralblatt MATH: 0861.60003 · Zbl 0861.60003 [3] X. Cabré and Y. Sire, “Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates”, Ann. Inst. H. Poincaré Anal. Non Linéaire 31:1 (2014), 23-53. Mathematical Reviews (MathSciNet): MR3165278 Zentralblatt MATH: 1286.35248 Digital Object Identifier: doi:10.1016/j.anihpc.2013.02.001 · Zbl 1286.35248 [4] Y.-H. Chen and C. Liu, “Ground state solutions for non-autonomous fractional Choquard equations”, Nonlinearity 29:6 (2016), 1827-1842. Mathematical Reviews (MathSciNet): MR3502230 Zentralblatt MATH: 1381.35213 Digital Object Identifier: doi:10.1088/0951-7715/29/6/1827 · Zbl 1381.35213 [5] Z. Chen and W. Zou, “Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent”, Arch. Ration. Mech. Anal. 205:2 (2012), 515-551. Mathematical Reviews (MathSciNet): MR2947540 Zentralblatt MATH: 1256.35132 Digital Object Identifier: doi:10.1007/s00205-012-0513-8 · Zbl 1256.35132 [6] Z. Chen and W. Zou, “Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent: higher dimensional case”, Calc. Var. Partial Differential Equations 52:1-2 (2015), 423-467. Mathematical Reviews (MathSciNet): MR3299187 Zentralblatt MATH: 1312.35158 Digital Object Identifier: doi:10.1007/s00526-014-0717-x · Zbl 1312.35158 [7] Z. Chen, C.-S. Lin, and W. Zou, “Sign-changing solutions and phase separation for an elliptic system with critical exponent”, Comm. Partial Differential Equations 39:10 (2014), 1827-1859. Mathematical Reviews (MathSciNet): MR3250976 Zentralblatt MATH: 1308.35084 Digital Object Identifier: doi:10.1080/03605302.2014.908391 · Zbl 1308.35084 [8] P. d’Avenia, G. Siciliano, and M. Squassina, “Existence results for a doubly nonlocal equation”, São Paulo J. Math. Sci. 9:2 (2015), 311-324. Mathematical Reviews (MathSciNet): MR3457463 Zentralblatt MATH: 1369.35109 Digital Object Identifier: doi:10.1007/s40863-015-0023-3 · Zbl 1369.35109 [9] P. d’Avenia, G. Siciliano, and M. Squassina, “On fractional Choquard equations”, Math. Models Methods Appl. Sci. 25:8 (2015), 1447-1476. Mathematical Reviews (MathSciNet): MR3340706 Zentralblatt MATH: 1323.35205 Digital Object Identifier: doi:10.1142/S0218202515500384 · Zbl 1323.35205 [10] Z. Deng and Y. Huang, “Positive symmetric results for a weighted quasilinear elliptic system with multiple critical exponents in \(\smash{\mathbb R^N} \)”, Bound. Value Probl. (2017), article no. 28. Mathematical Reviews (MathSciNet): MR3613640 Zentralblatt MATH: 1362.35122 · Zbl 1362.35122 [11] F. Gao and M. Yang, “On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents”, J. Math. Anal. Appl. 448:2 (2017), 1006-1041. Mathematical Reviews (MathSciNet): MR3582271 Zentralblatt MATH: 1357.35106 Digital Object Identifier: doi:10.1016/j.jmaa.2016.11.015 · Zbl 1357.35106 [12] F. Gao and M. Yang, “The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation”, Sci. China Math. 61:7 (2018), 1219-1242. Mathematical Reviews (MathSciNet): MR3817173 Zentralblatt MATH: 1397.35087 Digital Object Identifier: doi:10.1007/s11425-016-9067-5 · Zbl 1397.35087 [13] A. Garroni and S. Müller, “\( \Gamma \)-limit of a phase-field model of dislocations”, SIAM J. Math. Anal. 36:6 (2005), 1943-1964. Mathematical Reviews (MathSciNet): MR2178227 Zentralblatt MATH: 1094.82008 Digital Object Identifier: doi:10.1137/S003614100343768X · Zbl 1094.82008 [14] J. Giacomoni, T. Mukherjee, and K. Sreenadh, “Doubly nonlocal system with Hardy-Littlewood-Sobolev critical nonlinearity”, J. Math. Anal. Appl. 467:1 (2018), 638-672. Mathematical Reviews (MathSciNet): MR3834826 Zentralblatt MATH: 1396.35068 Digital Object Identifier: doi:10.1016/j.jmaa.2018.07.035 · Zbl 1396.35068 [15] Z. Guo and W. Zou, “On a class of coupled Schrödinger systems with critical Sobolev exponent growth”, Math. Methods Appl. Sci. 39:7 (2016), 1730-1746. Mathematical Reviews (MathSciNet): MR3499041 Zentralblatt MATH: 1341.35040 Digital Object Identifier: doi:10.1002/mma.3598 · Zbl 1341.35040 [16] Z. Guo, S. Luo, and W. Zou, “On critical systems involving fractional Laplacian”, J. Math. Anal. Appl. 446:1 (2017), 681-706. Mathematical Reviews (MathSciNet): MR3554751 Zentralblatt MATH: 1409.35217 Digital Object Identifier: doi:10.1016/j.jmaa.2016.08.069 · Zbl 1409.35217 [17] Z. Guo, M. Melgaard, and W. Zou, “Schrödinger equations with magnetic fields and Hardy-Sobolev critical exponents”, Electron. J. Differential Equations (2017), article no. 199. Mathematical Reviews (MathSciNet): MR3690226 Zentralblatt MATH: 1375.35484 · Zbl 1375.35484 [18] Z. Guo, K. Perera, and W. Zou, “On critical \(p\)-Laplacian systems”, Adv. Nonlinear Stud. 17:4 (2017), 641-659. Mathematical Reviews (MathSciNet): MR3709034 Zentralblatt MATH: 1372.35034 Digital Object Identifier: doi:10.1515/ans-2017-6029 · Zbl 1372.35034 [19] E. H. Lieb and M. Loss, Analysis, 2nd ed., Graduate Studies in Mathematics 14, American Mathematical Society, Providence, RI, 2001. Mathematical Reviews (MathSciNet): MR1817225 Zentralblatt MATH: 0966.26002 · Zbl 0966.26002 [20] D. Lü and G. Xu, “On nonlinear fractional Schrödinger equations with Hartree-type nonlinearity”, Appl. Anal. 97:2 (2018), 255-273. Mathematical Reviews (MathSciNet): MR3750483 Zentralblatt MATH: 1393.35224 Digital Object Identifier: doi:10.1080/00036811.2016.1260708 · Zbl 1393.35224 [21] C. Mou, “Nonlinear elliptic systems involving the fractional Laplacian in the unit ball and on a half space”, Commun. Pure Appl. Anal. 14:6 (2015), 2335-2362. Mathematical Reviews (MathSciNet): MR3411110 Zentralblatt MATH: 1326.35125 Digital Object Identifier: doi:10.3934/cpaa.2015.14.2335 · Zbl 1326.35125 [22] T. Mukherjee and K. Sreenadh, “Fractional Choquard equation with critical nonlinearities”, NoDEA Nonlinear Differential Equations Appl. 24:6 (2017), article no. 63. Mathematical Reviews (MathSciNet): MR3720946 Zentralblatt MATH: 1387.35608 · Zbl 1387.35608 [23] Y. J. Park, “Fractional Polya-Szegő inequality”, J. Chungcheong Math. Soc. 24:2 (2011), 267-271. [24] S. Peng, Y. Peng, and Z. Wang, “On elliptic systems with Sobolev critical growth”, Calc. Var. Partial Differential Equations 55:6 (2016), article no. 142. Mathematical Reviews (MathSciNet): MR3567641 Zentralblatt MATH: 1364.35091 Digital Object Identifier: doi:10.1007/s00526-016-1091-7 · Zbl 1364.35091 [25] X. Ros-Oton and J. Serra, “The Dirichlet problem for the fractional Laplacian: regularity up to the boundary”, J. Math. Pures Appl. \((9) 101\):3 (2014), 275-302. Mathematical Reviews (MathSciNet): MR3168912 Zentralblatt MATH: 1285.35020 Digital Object Identifier: doi:10.1016/j.matpur.2013.06.003 · Zbl 1285.35020 [26] R. Servadei and E. Valdinoci, “The Brezis-Nirenberg result for the fractional Laplacian”, Trans. Amer. Math. Soc. 367:1 (2015), 67-102. Mathematical Reviews (MathSciNet): MR3271254 Zentralblatt MATH: 1323.35202 Digital Object Identifier: doi:10.1090/S0002-9947-2014-05884-4 · Zbl 1323.35202 [27] L. Silvestre, “Regularity of the obstacle problem for a fractional power of the Laplace operator”, Comm. Pure Appl. Math. 60:1 (2007), 67-112. Mathematical Reviews (MathSciNet): MR2270163 Zentralblatt MATH: 1141.49035 Digital Object Identifier: doi:10.1002/cpa.20153 · Zbl 1141.49035 [28] Y. Wu and W. Zou, “Spikes of the two-component elliptic system in \(\mathbb{R}^4\) with the critical Sobolev exponent”, Calc. Var. Partial Differential Equations 58:1 (2019), article no. 24. Mathematical Reviews (MathSciNet): MR3895387 Zentralblatt MATH: 1406.35028 · Zbl 1406.35028 [29] M. Yang, J. C. de Albuquerque, E. D. Silva, and M. L. Silva, “On the critical cases of linearly coupled Choquard systems”, Appl. Math. Lett. 91 (2019), 1-8. Mathematical Reviews (MathSciNet): MR3886985 Zentralblatt MATH: 1411.35106 Digital Object Identifier: doi:10.1016/j.aml.2018.11.005 · Zbl 1411.35106 [30] Y. Yang, Q. Y. Hong, and X. Shang, “Existence of solutions for non-local elliptic systems with Hardy-Littlewood-Sobolev critical nonlinearities”, Electron. J. Differential Equations (2019), article no. 90. Mathematical Reviews (MathSciNet): MR3992301 Zentralblatt MATH: 1418.35373 · Zbl 1418.35373 [31] S. You, P. Zhao, and Q. Wang, “Positive ground states for coupled nonlinear Choquard equations involving Hardy-Littlewood-Sobolev critical exponent”, Nonlinear Anal. Real World Appl. 48 (2019), 182-211. Mathematical Reviews (MathSciNet): MR3909887 Zentralblatt MATH: 1428.35543 Digital Object Identifier: doi:10.1016/j.nonrwa.2019.01.015 · Zbl 1428.35543 [32] M. · Zbl 1401.35071 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.