×

Existence of entire radial large solutions for a class of Monge-Ampère type equations and systems. (English) Zbl 1454.35145

Summary: This paper is mainly concerned with existence of entire positive radial large solutions for a class of Monge-Ampère type equations:
\[ \det D^2 u (x)-\alpha \Delta u = a (|x|)f(u), \quad x \in \mathbb{R}^N ,\] and systems:
\[ \begin{aligned} \det D^2 u (x)-\alpha \Delta u & = a (|x|) f(v), \quad & x \in \mathbb{R}^N, \\ \det D^2 v (x)-\beta \Delta v & = b (|x|) g(u), \quad & x \in \mathbb{R}^N, \end{aligned}\] where \(\det D^2 u\) is the so-called Monge-Ampère operator, \(\Delta\) is the classical Laplace operator, \(N \geq 2\), \(\alpha, \beta\) are positive constants, \(f, g : [0, \infty) \to [0, \infty)\) are continuous and nondecreasing, and \(a, b : \mathbb{R}^N \to [0, \infty)\) are continuous.

MSC:

35J60 Nonlinear elliptic equations
35J96 Monge-Ampère equations
35B08 Entire solutions to PDEs
PDF BibTeX XML Cite
Full Text: DOI Euclid

References:

[1] D.-P. Covei, “A necessary and a sufficient condition for the existence of the positive radial solutions to Hessian equations and systems with weights”, Acta Math. Sci. Ser. B 37:1 (2017), 47-57. Mathematical Reviews (MathSciNet): MR3581525
Zentralblatt MATH: 1389.35027
Digital Object Identifier: doi:10.1016/S0252-9602(16)30114-X
· Zbl 1389.35027
[2] P. Delanoë, “Radially symmetric boundary value problems for real and complex elliptic Monge-Ampère equations”, J. Differential Equations 58:3 (1985), 318-344. Mathematical Reviews (MathSciNet): MR797314
Zentralblatt MATH: 0564.35044
Digital Object Identifier: doi:10.1016/0022-0396(85)90003-8
· Zbl 0564.35044
[3] A. R. F. de Holanda, “Blow-up solutions for a general class of the second-order differential equations on the half line”, C. R. Math. Acad. Sci. Paris 355:4 (2017), 426-431. Mathematical Reviews (MathSciNet): MR3634680
Digital Object Identifier: doi:10.1016/j.crma.2017.03.003
· Zbl 1370.34060
[4] X. Ji and J. Bao, “Necessary and sufficient conditions on solvability for Hessian inequalities”, Proc. Amer. Math. Soc. 138:1 (2010), 175-188. Mathematical Reviews (MathSciNet): MR2550182
Zentralblatt MATH: 1180.35234
Digital Object Identifier: doi:10.1090/S0002-9939-09-10032-1
· Zbl 1180.35234
[5] Q. Jin, Y. Li, and H. Xu, “Nonexistence of positive solutions for some fully nonlinear elliptic equations”, Methods Appl. Anal. 12:4 (2005), 441-449. Mathematical Reviews (MathSciNet): MR2258318
Zentralblatt MATH: 1143.35322
Digital Object Identifier: doi:10.4310/MAA.2005.v12.n4.a5
Project Euclid: euclid.maa/1175797468
· Zbl 1143.35322
[6] T. Kusano and C. A. Swanson, “Existence theorems for elliptic Monge-Ampère equations in the plane”, Differential Integral Equations 3:3 (1990), 487-493. Mathematical Reviews (MathSciNet): MR1047748
Zentralblatt MATH: 0723.35030
Project Euclid: euclid.die/1371571146
· Zbl 0723.35030
[7] T. Kusano and C. A. Swanson, “Existence theorems for Monge-Ampère equations in \(\mathbb{R}^N\)”, Hiroshima Math. J. 20:3 (1990), 643-650. Mathematical Reviews (MathSciNet): MR1083432
Zentralblatt MATH: 0723.35030
Digital Object Identifier: doi:10.32917/hmj/1206129054
Project Euclid: euclid.hmj/1206129054
· Zbl 0723.35030
[8] T. Kusano and C. A. Swanson, “Entire solutions of real and complex Monge-Ampère equations”, SIAM J. Math. Anal. 22:1 (1991), 157-168. Mathematical Reviews (MathSciNet): MR1080152
Zentralblatt MATH: 0838.35038
Digital Object Identifier: doi:10.1137/0522010
· Zbl 0838.35038
[9] A. V. Pogorelov, Monge-Ampère equations of elliptic type, P. Noordhoff Ltd., Groningen, The Netherlands, 1964. Mathematical Reviews (MathSciNet): MR0180763
Zentralblatt MATH: 0133.04902
· Zbl 0133.04902
[10] Z. · Zbl 1329.35126
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.