Borzooei, Rajab Ali; Xin, Xiao Long; Roh, Eun Hwan; Jun, Young Bae Int-soft implicative hyper BCK-ideals in hyper BCK-algebras. (English) Zbl 1455.06010 Missouri J. Math. Sci. 31, No. 2, 152-163 (2019). Relations between various types of int-soft hyper BCK-ideals are discussed. Conditions for an int-soft hyper BCK-ideal to be an int-soft weak implicative hyper BCK-ideal are provided. Using an int-soft weak implicative hyper BCK-ideal, a new int-soft weak implicative hyper BCK-ideal is established. Reviewer: Wiesław A. Dudek (Wrocław) MSC: 06F35 BCK-algebras, BCI-algebras 03G25 Other algebras related to logic 06B10 Lattice ideals, congruence relations Keywords:int-soft hyper BCK-ideal; weak hyper BCK-ideal; strong hyper BCK-ideal; \(s\)-weak hyper BCK-ideal; int-soft weak implicative hyper BCK-ideal; int-soft implicative hyper BCK-ideal × Cite Format Result Cite Review PDF Full Text: DOI Euclid References: [1] R. A. Borzooei and M. Bakhshi, (Weak) implicative hyper BCK-ideals, Quasigroups Related Systems, 12 (2004), 13-28. · Zbl 1066.06013 [2] D. Chen, E. C. C. Tsang, D. S. Yeung, and X. Wang, The parametrization reduction of soft sets and its applications, Comput. Math. Appl., 49 (2005), 757-763. · Zbl 1074.03510 · doi:10.1016/j.camwa.2004.10.036 [3] Y. B. Jun and S. Z. Song, Hyper BCK-ideals based on soft set theory, Asian-European J. Math., 9.3 (2016), 1650065 (12 pages). · Zbl 1347.06020 · doi:10.1142/S1793557116500650 [4] Y. B. Jun and X. L. Xin, Implicative hyper BCK-ideals of hyper BCK-algebras, Math. Japon., 52.3 (2000), 435-443. · Zbl 0970.06503 [5] Y. B. Jun, X. L. Xin, E. H. Roh, and M. M. Zadehi, Strong hyperBCK-ideals of hyperBCK-algerbas, Math. Japon., 51.3 (2000), 493-498. · Zbl 0962.06021 [6] Y. B. Jun, M. M. Zahedi, X. L. Xin, and R. A. Borzoei, On hyper BCK-algebras, Italian J. Pure Appl. Math., 8 (2000), 127-136. · Zbl 1008.06014 [7] P. K. Maji, R. Biswas, and A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555-562. · Zbl 1032.03525 · doi:10.1016/S0898-1221(03)00016-6 [8] P. K. Maji, A. R. Roy, and R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077-1083. · Zbl 1044.90042 · doi:10.1016/S0898-1221(02)00216-X [9] F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandinaves, Stockholm (1934), 45-49. · Zbl 0012.05303 [10] D. Molodtsov, Soft set theory - First results, Comput. Math. Appl., 37 (1999), 19-31. · Zbl 0936.03049 · doi:10.1016/S0898-1221(99)00056-5 [11] A. N. Prior, Formal Logic, 2nd ed., Clarendon Press, Oxford, 1962. · Zbl 0124.00205 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.