Galkin, Sergey; Iritani, Hiroshi Gamma conjecture via mirror symmetry. (English) Zbl 1452.53073 Hori, Kentaro (ed.) et al., Primitive forms and related subjects – Kavli IPMU 2014. Proceedings of the international conference, University of Tokyo, Tokyo, Japan, February 10–14, 2014. Tokyo: Mathematical Society of Japan. Adv. Stud. Pure Math. 83, 55-115 (2019). Summary: The asymptotic behaviour of solutions to the quantum differential equation of a Fano manifold \(F\) defines a characteristic class \(A_F\) of \(F\), called the principal asymptotic class. The Gamma conjecture [the first author et al., Duke Math. J. 165, No. 11, 2005–2077 (2016; Zbl 1350.14041)] of Vasily Golyshev and the present authors claims that the principal asymptotic class \(A_F\) equals the Gamma class \(\widehat{\Gamma}_F\) associated to Euler’s \(\Gamma \)-function. We illustrate in the case of toric varieties, toric complete intersections and Grassmannians how this conjecture follows from mirror symmetry. We also prove that the Gamma conjecture is compatible with taking hyperplane sections, and give a heuristic argument how the mirror oscillatory integral and the Gamma class for the projective space arise from the polynomial loop space.For the entire collection see [Zbl 1446.53004]. Cited in 2 ReviewsCited in 12 Documents MSC: 53D37 Symplectic aspects of mirror symmetry, homological mirror symmetry, and Fukaya category 14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects) 14J45 Fano varieties 14J33 Mirror symmetry (algebro-geometric aspects) 11G42 Arithmetic mirror symmetry Keywords:Fano varieties; quantum cohomology; mirror symmetry; Dubrovin’s conjecture; gamma class; apery constant; derived category of coherent sheaves; exceptional collection; Landau-Ginzburg model Citations:Zbl 1350.14041 PDFBibTeX XMLCite \textit{S. Galkin} and \textit{H. Iritani}, Adv. Stud. Pure Math. 83, 55--115 (2019; Zbl 1452.53073) Full Text: DOI arXiv Euclid References: [1] Aaron Bertram, Ionut Ciocan-Fontanine and Bumsig Kim,Two proofs of a conjecture of Hori and Vafa, Duke Math. J. 126, No. 1, 101-136 (2005), arXiv:math.AG/0304403. · Zbl 1082.14055 [2] Lev Borisov and Richard Paul Horja,Mellin-Barnes integrals as Fourier- Mukai transforms, Adv. Math. 207 (2006), no. 2, 876-927, arXiv:math/0510486. · Zbl 1137.14314 [3] Tom Bridgeland and Valerio Toledano-Laredo,Stokes factors and multilogarithms, J. Reine Angew. Math. 682 (2013), 89-128, arXiv:1006.4623v6. · Zbl 1288.30037 [4] Philip Candelas, Xenia C. de la Ossa, Paul S. Green and Linda Parkes,An exactly soluble superconformal theory from a mirror pair of Calabi-Yau manifolds, Phys. Lett. B 258 (1991), no. 1-2, pp. 118-126. · Zbl 1098.32506 [5] Daewoong Cheong, Changzheng Li,On the ConjectureOof GGI forG/P, Adv. Math. 306 (2017), 704-721. arXiv:1412.2475. · Zbl 1390.14170 [6] Tom Coates and Alexander B. Givental,Quantum Riemann-Roch, Lefschetz and Serre, Ann. of Math. (2) 165 (2007), no. 1, pp. 15-53, arXiv:math/0110142. · Zbl 1189.14063 [7] Tom Coates, Alessio Corti, Sergey Galkin, Vasily Golyshev, Al Kasprzyk, Mirror symmetry and Fano manifolds, European Congress of Mathematics (Krak´ow, 2-7 July, 2012), November 2013 (824 pages), pp. 285-300, ISBN 978-3-03719-120-0, DOI:10.4171/120-1/16, arXiv:1212.1722. · Zbl 1364.14032 [8] Tom Coates, Alessio Corti, Sergey Galkin, Vasily Golyshev, Al Kasprzyk, Fano Varieties and Extremal Laurent Polynomials, A collaborative research blog, 3D Minkowski Period Sequences, http://coates.ma.ic.ac.uk/3DMinkowskiPeriodSequences.html. · Zbl 1364.14032 [9] John Alexander Cruz Morales, Anton Mellit, Nicolas Perrin and Maxim Smirnov,On quantum cohomology of Grassmannians of isotropic lines, unfoldings of An-singularities, and Lefschetz exceptional collections, with appendix by Alexander Kuznetsov, arXiv:1705.01819. · Zbl 1440.14249 [10] Nima Doroud, Jaume Gomis, Bruno Le Floch and Sungjay Lee,Exact results inD= 2supersymmetric gauge theories, J. High Energy Phys. 2013, no. 5, 093, front matter+69 pp. · Zbl 1342.81573 [11] Boris Dubrovin,Painlev´e transcendents and two-dimensional topological field theory, InThe Painlev´e property, CRM Ser. Math. Phys., 287-412. Springer, New York, 1999, arXiv:math/9803107. · Zbl 1026.34095 [12] Boris Dubrovin,Geometry and analytic theory of Frobenius manifolds, In Proceedings of the International Congress of Mathematicians, Vol.II (Berlin,1998), 315-326, arXiv:math/9807034. · Zbl 0916.32018 [13] Boris Dubrovin,On almost duality for Frobenius manifolds, Geometry, topology, and mathematical physics, 75-132, Amer. Math. Soc. Transl. Ser. 2, 212, Amer. Math. Soc., Providence, RI, 2004. · Zbl 1063.53092 [14] Boris Dubrovin,Quantum cohomology and isomonodromic deformation, Lecture at “Recent Progress in the Theory of Painlev´e Equations: Algebraic, asymptotic and topological aspects”, Strasbourg, November 2013. [15] J. J. Duistermaat and G. J. Heckman,On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math. 69 (2): 259-268; Addendum, Invent. Math. 72, 153-158. · Zbl 0503.58016 [16] Toru Eguchi, Kentaro Hori and Chuan-Sheng Xiong,Gravitational quantum cohomology, Internat. J. Modern Phys. A 12 (1997), no. 9, 1743-1782, arXiv:hep-th/9605225. · Zbl 1072.32500 [17] Sergey Galkin,Apery constants of homogeneous varieties, preprint SFB45 (2008), arXiv:1604.04652. [18] Sergey Galkin,Split notes(on non-commutative mirror symmetry), based on a lecture at Homological Mirror Symmetry and Category Theory workshop in Split, July 2011, IPMU 12-0112, http://db.ipmu.jp/ipmu/sysimg/ipmu/884.pdf. [19] Sergey Galkin,The conifold point, arXiv:1404.7388. [20] Sergey Galkin, Vasily Golyshev and Hiroshi Iritani,Gamma classes and quantum cohomology of Fano manifolds:Gamma conjectures, Duke Math. J. 165 (2016), no. 11, 2005-2077, arXiv:1404.6407. · Zbl 1350.14041 [21] Sergey Galkin, Anton Mellit, Maxim Smirnov,Dubrovin’s conjecture for IG(2,6). Int. Math. Res. Not. IMRN 2015, no. 18, 8847-8859. · Zbl 1444.14094 [22] Alexander B. Givental,Homological geometry and mirror symmetry, In: Proceedings of the ICM, Z¨urich, 1994, Birkh¨auser, Basel, 1995, vol 1, pp. 472-480. · Zbl 0863.14021 [23] Alexander B. Givental,Homological geometryI.Projective hypersurfaces, Selecta Math. (N.S.), vol 1 (1995), no. 2, pp. 325-345. · Zbl 0920.14028 [24] Alexander B. Givental,Equivariant Gromov-Witten invariants, Internat. Math. Res. Notices 1996, no. 13, 613-663. · Zbl 0881.55006 [25] Alexander B. Givental,A mirror theorem for toric complete intersections, Topological field theory, primitive forms and related topics, (Kyoto, 1996), pp. 141-175, Progr. Math., 160, Birkh¨auser. Boston, Boston, MA, 1998, arXiv:alg-geom/9701016. · Zbl 0936.14031 [26] Vasily Golyshev,Modularity of theD3equations and the Iskovskikh classification, Dokl. Akad. Nauk 396 (2004), no. 6, 733-739. · Zbl 1234.11053 [27] Vasily Golyshev,Classification problems and mirror duality, Surveys in geometry and number theory: reports on contemporary Russian mathematics, London Math. Soc. Lecture Note Ser., vol. 338, Cambridge Univ. Press, Cambridge, 2007, 88-121. · Zbl 1114.14024 [28] Vasily Golyshev,Deresonating a Tate period, arXiv:0908.1458. [29] Vasily Golyshev and Laurent Manivel,Quantum cohomology and the Satake isomorphism, arXiv:1106.3120. [30] Vasily Golyshev and Anton Mellit,Gamma structures and Gauss’s contiguity, J. Geom. Phys.78(2014), 12-18, arXiv:0902.2003. · Zbl 1284.33001 [31] Vasily Golyshev and Don Zagier,Proof of the gamma conjecture for Fano 3-folds of Picard rank1, Izv. Ross. Akad. Nauk Ser. Mat., 80 (2016), no. 1, 27-54. · Zbl 1369.14054 [32] Phillip Griffiths and Joseph Harris,Principles of Algebraic Geometry, Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York, 1978. · Zbl 0408.14001 [33] Megumi Harada and Gregory D. Landweber,TheK-theory of abelian versus nonabelian symplectic quotients, arXiv:math/0601294. · Zbl 1148.53063 [34] Claus Hertling, Yuri I. Manin, Constantine Teleman,An update on semisimple quantum cohomology andF-manifolds, Tr. Mat. Inst. Steklova 264 (2009), Mnogomernaya Algebraicheskaya Geometriya, 69-76; translation in Proc. Steklov Inst. Math. 264 (2009), no. 1, 62-69. · Zbl 1312.14128 [35] Kentaro Hori and Mauricio Romo,Exact results in two-dimensional(2,2) supersymmetric gauge theory with boundary, arXiv:1308.2438. [36] Kentaro Hori and Cumrun Vafa,Mirror symmetry, arXiv:hep-th/0002222. · Zbl 1044.14018 [37] Richard Paul Horja,Hypergeometric functions and mirror symmetry in toric varieties, arXiv:math/9912109. [38] Shinobu Hosono,Central charges, symplectic forms,and hypergeometric series in local mirror symmetry, Mirror symmetry. V, pp. 405-439, AMS/IP Stud. Adv. Math., 38, Amer. Math. Soc., Providence, RI, 2006, arXiv:hep-th/0404043. · Zbl 1114.14025 [39] Shinobu Hosono, Albrecht Klemm, Stefan Theisen and Shing-Tung Yau, Mirror symmetry, mirror map and applications to complete intersection Calabi-Yau spaces, Nuclear Phys. B 433 (1995), no. 3, 501-552, arXiv:hep-th/9406055. · Zbl 0908.32008 [40] Hiroshi Iritani,Quantum D-modules and equivariant Floer theory for free loop spaces.Math. Z. 252, no. 3 (2006), pp. 577-622, arXiv:math.DG/0410487. · Zbl 1121.53062 [41] Hiroshi Iritani,An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math.222(2009), no. 3, 1016-1079, arXiv:0903.1463. · Zbl 1190.14054 [42] Hiroshi Iritani,tt∗-geometry in quantum cohomology, arXiv:0906.1307. [43] Hiroshi Iritani,Quantum cohomology and periods, Ann. Inst. Fourier 61, No. 7, 2909-2958 (2011), arXiv:1101.4512. · Zbl 1300.14055 [44] Hiroshi Iritani, Etienne Mann, Thierry Mignon,Quantum Serre theorem as a duality between quantumD-modules, Int. Math. Res. Not. IMRN 2016, no. 9, 2828-2888. arXiv:1412.4523. · Zbl 1404.14066 [45] Mikhail Kapranov,The derived category of coherent sheaves on Grassmann varieties, Funktsional. Anal. i Prilozhen. 17 (1983), no. 2, 78-79. · Zbl 0571.14007 [46] Ludmil Katzarkov, Maxim Kontsevich and Tony Pantev,Hodge theoretic aspects of mirror symmetry, From Hodge theory to integrability and TQFTtt∗-geometry, 87-174, Proc. Sympos. Pure Math., 78, Amer. Math. Soc., Providence, RI, 2008. arXiv:0806.0107. · Zbl 1206.14009 [47] Bumsig Kim,Quantum hyperplane section theorem for homogeneous spaces, Acta Math. 183 (1999), no. 1, 71-99. · Zbl 1023.14028 [48] Bumsig Kim and Claude Sabbah,Quantum cohomology of the Grassmannian and alternate Thom-Sebastiani, Compos. Math. 144 (2008), no. 1, 221-246, arXiv:math/0611475. · Zbl 1151.53075 [49] Maxim Kontsevich and Yuri I. Manin,Gromov-Witten classes,quantum cohomology, and enumerative geometry, Comm. Math. Phys. Volume 164, Number 3 (1994), 525-562. · Zbl 0853.14020 [50] Yuan-Pin Lee,Quantum Lefschetz hyperplane theorem, Invent. Math. 145 (2001), no. 1, 121-149. · Zbl 1082.14056 [51] Anatoly S. Libgober,Chern classes and the periods of mirrors, Math. Res. Lett., 6 (1999), 141-149, arXiv:math/9803119. · Zbl 0956.32015 [52] Rongmin Lu,TheΓ-genus and a regularization of anS1-equivariant Euler class, J. Phys. A 41 (2008), no. 42, 425204 (13pp), arXiv:0804.2714. · Zbl 1209.57018 [53] Yuri I. Manin,Frobenius manifolds,quantum cohomology, and moduli spaces, American Mathematical Society Colloquium Publications, 47. American Mathematical Society, Providence, RI, 1999. · Zbl 0952.14032 [54] Robert J. Marsh and Konstanze Rietsch,TheB-model connection and mirror symmetry for Grassmannians, arXiv:1307.1085. [55] Shaun Martin,Symplectic quotients by a nonabelian group and by its maximal torus, arXiv:math/0001002. [56] Anton Mellit, Nicolas Perrin and Maxim Smirnov,Update on quantum cohomology ofIG(2,2n), arXiv:1510.07903. · Zbl 1440.14249 [57] Rahul Pandharipande,Rational curves on hypersurfaces(after A. Givental), S´eminaire Bourbaki. Vol. 1997/98, Ast´erisque, 252, 1998, Exp. No. 848, 5, 307-340, arXiv:math/9806133. · Zbl 0932.14029 [58] Nicolas Perrin,Semisimple quantum cohomology of some Fano varieties, arXiv:1405.5914. [59] S. Piunikhin, D. Salamon and M. Schwarz,Symplectic Floer-Donaldson Theory and Quantum Cohomology, Contact and symplectic geometry (Cambridge, 1994), 171-200, Publ. Newton Inst., 8, Cambridge Univ. Press, Cambridge, 1996. · Zbl 0874.53031 [60] Victor Przyjalkowski,Weak Landau-Ginzburg models for smooth Fano threefolds, Izv. Ross. Akad. Nauk Ser. Mat. 77 (2013), no. 4, 135-160; translation in Izv. Math. 77 (2013), no. 4, 772-794. arXiv:0902.4668. · Zbl 1281.14033 [61] Victor Przyjalkowski,Hori-Vafa mirror models for complete intersections in weighted projective spaces and weak Landau-Ginzburg models, Cent. Eur. J. Math. 9 (2011), no. 5, 972-977, arXiv:1003.5200. · Zbl 1236.14038 [62] Konstanze Rietsch,A mirror symmetric construction forqHT∗(G/P)(q), Advances in Mathematics 217 (2008), 2401-2442. · Zbl 1222.14107 [63] Claude Sabbah,Isomonodromic deformations and Frobenius manifolds. An Introduction, Translated from the 2002 French edition, Universitext, Springer-Verlag London, Ltd., London; EDP Sciences, Les Ulis, 2007. · Zbl 1131.14004 [64] Fumihiko Sanda and Yota Shamoto,An analogue of Dubrovin’s conjecture, arXiv:1705.05989. [65] Constantin Teleman,The structure of 2D semisimple field theories, Invent. Math. 188, No. 3, 525-588 (2012), arXiv:0712.0160. · Zbl 1248.53074 [66] Kazushi Ueda,Stokes matrices for the quantum cohomologies of Grassmannians, Int. Math. Res. Not. 2005, No. 34, 2075-2086 (2005), arXiv:math/0503355. · Zbl 1088.53060 [67] Yiannis Vlassopoulos,Quantum Cohomology and Morse Theory on the Loop Space of Toric Varieties, arXiv:math.AG/0203083. [68] Wolfgang Wasow,Asymptotic expansions for ordinary differential equations, Pure and Applied Mathematics, Vol. · Zbl 0133.35301 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.