From a class of Calabi-Yau dg algebras to Frobenius manifolds via primitive forms. (English) Zbl 1452.14041

Hori, Kentaro (ed.) et al., Primitive forms and related subjects – Kavli IPMU 2014. Proceedings of the international conference, University of Tokyo, Tokyo, Japan, February 10–14, 2014. Tokyo: Mathematical Society of Japan. Adv. Stud. Pure Math. 83, 389-415 (2019).
Summary: It is one of the most important problems in mirror symmetry to obtain functorially Frobenius manifolds from smooth compact Calabi-Yau \(A_\infty \)-categories. This paper gives an approach to this problem based on the theory of primitive forms and, in particular, reduces it to a formality conjecture of certain homotopy algebra. Under this formality conjecture, a formal primitive form for a non-negatively graded connected smooth compact Calabi-Yau dg algebra can be constructed, which enable us to have a formal Frobenius manifold.
For the entire collection see [Zbl 1446.53004].


14J33 Mirror symmetry (algebro-geometric aspects)
53D37 Symplectic aspects of mirror symmetry, homological mirror symmetry, and Fukaya category
14F08 Derived categories of sheaves, dg categories, and related constructions in algebraic geometry
Full Text: DOI arXiv Euclid


[1] K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono,Floer theory and mirror symmetry on compact toric manifolds, Ast´erisque376(2016). · Zbl 1344.53001
[2] M. Gerstenhaber,The cohomology structure of an associative ring, Annals of Math.,78(1963), 267-288. · Zbl 0131.27302
[3] M. Gerstenhaber, S. Schack,Algebraic cohomology and deformation theory, NATO ASI Ser. C (1988), 11-264. · Zbl 0676.16022
[4] E. Getzler,Cartan homotopy formulas and the Gauss-Manin connection in cyclic homology, Quantum deformations of algebras and their representations (Ramat-Gan, 1991/1992; Rehovot, 1991/1992), 65-78, Israel Math. Conf. Proc., 7, Bar-Ilan Univ., Ramat Gan, 1993. · Zbl 0844.18007
[5] V. Ginzburg,Calabi-Yau algebras, arXiv:math/0612139. · Zbl 1204.14004
[6] C. Hertling,Frobenius manifolds and moduli spaces for singularities, Cambridge University Press, 2002. · Zbl 1023.14018
[7] I. Iwanari,Period mappings for noncommutative algebras, arXiv:1604.08283.
[8] D. Kaledin,Non-commutative Hodge-to-de Rham degeneration via the method of Deligne-Illusie, Pure Appl. Math. Q.4(2008), no. 3, Special Issue: In honor of Fedor Bogomolov. Part 2, 785-875. · Zbl 1189.14013
[9] D. Kaledin,Homological methods in Non-commutative Geometry, Lecture notes for the course “Homological methods in Non-commutative Geometry”, University of Tokyo, October 2007-March 2008. http://imperium.lenin.ru/ kaledin/tokyo/
[10] D. Kaledin,Spectral sequences for cyclic homology, arXiv:1601.00637. · Zbl 1390.14011
[11] M. Kashiwara and P. Schapira,Categories and sheaves, Fundamental Principles of Mathematical Sciences,332. Springer-Verlag, Berlin, 2006. x+497 pp. · Zbl 1118.18001
[12] L. Katzarkov, M. Kontsevich and T. Pantev,Hodge theoretic aspects of mirror symmetry, Proceedings of Symposia in Pure Mathematics78(2008), 87-174. · Zbl 1206.14009
[13] B. Keller,On differential graded categories, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Z¨urich (2006), 151-190. · Zbl 1140.18008
[14] B. Keller,Calabi-Yau triangulated categories, Trends in Representation Theory of Algebras (Z¨urich), A. Skowr´onski, ed., Eur. Math. Soc. (2008), 467-489. · Zbl 1202.16014
[15] M. Kontsevich,Homological algebra of mirror symmetry, In Proceedings of the ICM (Z¨urich, 1994), Birkh¨auser, Basel, (1995), 120-139. · Zbl 0846.53021
[16] B. Kontsevich,Deformation quantization of Poisson manifolds, Letters in Mathematical Physics66(2003), 157-216. · Zbl 1058.53065
[17] M. Kontsevich and Y. Soibelmann,Notes onA∞-algebras,A∞-categories and non-commutative geometry.I, Homological mirror symmetry, Lecture Notes in Phys., Springer, Berlin,757(2009), 153-219. · Zbl 1202.81120
[18] C. Li, S. Li and K. Saito,Primitive forms via polyvector fields, arXiv:1311.1659.
[19] Y. Manin,Frobenius manifolds,quantum cohomology,and moduli spaces, American Math.Society Colloquium Publ. v.47, 1999. · Zbl 0952.14032
[20] D. Orlov,Remarks on generators and dimensions of triangulated categories, Moscow Math. J.9(2009), no. 1, 153-159. · Zbl 1197.18004
[21] C. Sabbah,D´eformations isomonodromiques et vari´et´es de Frobenius, 2002, EDP Sciences. · Zbl 1101.14001
[22] K. Saito,Period mapping associated to a primitive form, Publ. RIMS, Kyoto Univ.19(1983), 1231-1264. · Zbl 0539.58003
[23] K. Saito,The higher residue pairingsKF(k)for a family of hypersurface singular points, Advanced Studies in Pure Mathematics40(1983), part 2, 441-463. · Zbl 0565.32005
[24] K. Saito and A. TakahashiFrom Primitive Forms to Frobenius Manifolds, Proceedings of Symposia in Pure Mathematics78(2008), 31-48. · Zbl 1161.32013
[25] M. Saito,On the structure of Brieskorn lattice, Annales de l’institut Fourier, 39(1989), 27-72. · Zbl 0644.32005
[26] M. Saito,On the structure of Brieskorn lattice,II, arXiv:1312.6629. · Zbl 0644.32005
[27] N. Sheridan,Formulae in noncommutative Hodge theory, arXiv:1510.03795. · Zbl 1506.14025
[28] D. Shklyarov,Non-commutative Hodge structures:Towards matching categorical and geometric examples. Trans. Amer. Math. Soc.366(2014), 2923-2974. · Zbl 1354.16009
[29] D. Shklyarov,Matrix factorizations and higher residue pairings, arXiv:1306.4878. · Zbl 1397.14007
[30] J. Terllia,Smoothness theorem for differential BV algebras, arXiv: 0707.1290.
[31] B.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.