zbMATH — the first resource for mathematics

A social communication model based on simplicial complexes. (English) Zbl 1448.91219
Summary: Networks offer a powerful language with which to describe and study pairwise interaction. However, in many contexts, these rich collective phenomena require a higher-order approach to encode dynamical processes – for example in idea integration and information transmission (co-publication is a particularly familiar example). Here we introduce a novel framework for social communication by reshaping the networked system to be a simplicial complex, where the communication involves the interaction not only of individual nodes but also among cliques to which they belong. Simplicial complexes extend the network-based pairwise relationship to multiagent interaction. Assuming that the same individual in different cliques may play different roles, a threshold is designed and combined with the node state to determine the clique state. We employ the discrete microscopic Markov chain approach to model the simplex-based social communication and then obtain the underlying critical condition for information outbreaks. Moreover, we perform extensive numerical analysis of the proposed simplicial complex-based communication model and compare its performance with Monte Carlo simulation.
91D30 Social networks; opinion dynamics
94A40 Channel models (including quantum) in information and communication theory
05C10 Planar graphs; geometric and topological aspects of graph theory
93B24 Topological methods
Full Text: DOI
[1] Barabási, A. L.; Albert, R., Emergence of scaling in random networks, Science, 286, 509-512 (1999) · Zbl 1226.05223
[2] Barrat, A.; Barthélemy, M.; Vespignani, A., Dynamical Processes on Complex Networks (2008), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1198.90005
[3] Latora, V.; Nicosia, V.; Russo, G., Complex Networks: Principles, Methods and Applications (2017), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1387.68003
[4] Pastor-Satorras, R.; Castellano, C.; Van Mieghem, P.; Vespignani, A., Epidemic processes in complex networks, Rev. Mod. Phys., 87, 925-979 (2015)
[5] Skardal, P. S.; Arenas, A., Abrupt desynchronization and extensive multistability in globally coupled oscillator simplexes, Phys. Rev. Lett., 122, Article 248301 pp. (2019)
[6] U. Alvarez-Rodriguez, F. Battiston, G.F. de Arruda, Y. Moreno, M. Perc, V. Latora, Evolutionary dynamics of higher-order interactions, 2020, arXiv.org.
[7] Palla, G.; Derenyi, I.; Farkas, I.; Vicsek, T., Uncovering the overlapping community structure of complex networks in nature and society, Nature, 435, 814-818 (2005)
[8] Newman, M. E., Finding community structure in networks using the eigenvectors of matrices, Phys. Rev. E, 74, Article 036104 pp. (2006)
[9] Patania, A.; Petri, G.; Vaccarino, F., The shape of collaborations, EPJ Data Sci., 6, Article 18 pp. (2017)
[10] Reimann, M. W.; Nolte, M.; Scolamiero, M.; Turner, K.; Perin, R.; Chindemi, G.; Dłotko, P.; Levi, R.; Hess, K.; Markram, H., Cliques of neurons bound into cavities provide a missing link between structure and function, Front. Comput. Neurosci., 11 (2017)
[11] Giusti, C.; Pastalkova, E.; Curto, C.; Itskov, V., Clique topology reveals intrinsic geometric structure in neural correlations, Proc. Natl. Acad. Sci. USA, 112, 13455-13460 (2015) · Zbl 1355.92015
[12] Estrada, E.; Ross, G. J., Centralities in simplicial complexes. Applications to protein interaction networks, J. Theor. Biol., 438, 46-60 (2018) · Zbl 1394.92040
[13] Lambiotte, R.; Rosvall, M.; Scholtes, I., From networks to optimal higher-order models of complex systems, Nat. Phys., 15, 313-320 (2019)
[14] Salnikov, V.; Cassese, D.; Lambiotte, R., Simplicial complexes and complex systems, Eur. J. Phys., 40, Article 014001 pp. (2019) · Zbl 1420.55033
[15] Petri, G.; Barrat, A., Simplicial activity driven model, Phys. Rev. Lett., 121, Article 228301 pp. (2018)
[16] Iacopini, I.; Petri, G.; Barrat, A.; Latora, V., Simplicial models of social contagion, Nat. Commun., 10, 2485 (2019)
[17] Maletić, S.; Zhao, Y., Simplicial Complexes in Complex Systems: The Search for Alternatives (2017), Harbin Institute of Technology: Harbin Institute of Technology Harbin
[18] Hatcher, A., Algebraic Topology (2002), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1044.55001
[19] Kahle, M., Topology of random clique complexes, Discrete Math., 309, 1658-1671 (2009) · Zbl 1215.05163
[20] Lee, H.; Chung, M. K.; Choi, H.; Kang, H.; Ha, S.; Kim, Y. K.; Lee, D. S., Harmonic holes as the submodules of brain network and network dissimilarity, (Marfil, R.; Calderón, M.; Díaz del Río, F.; Real, P.; Bandera, A., Computational Topology in Image Context (2019), Springer International Publishing: Springer International Publishing Cham), 110-122
[21] Sizemore, A. E.; Giusti, C.; Kahn, A.; Vettel, J. M.; Betzel, R. F.; Bassett, D. S., Cliques and cavities in the human connectome, J. Comput. Neurosci., 44, 115-145 (2018) · Zbl 1402.92119
[22] Sznajd-Weron, K.; Sznajd, J., Opinion evolution in closed community, Int. J. Mod. Phys. C, 11, 1157-1165 (2000)
[23] Maletić, S.; Rajković, M., Consensus formation on a simplicial complex of opinions, Phys. A, Stat. Mech. Appl., 397, 111-120 (2014) · Zbl 1402.91604
[24] Galam, S., Minority opinion spreading in random geometry, Eur. Phys. J. B, 25, 403-406 (2002)
[25] Iacopini, I.; Milojević, S.; Latora, V., Network dynamics of innovation processes, Phys. Rev. Lett., 120, Article 048301 pp. (2018)
[26] Brockmann, D.; Helbing, D., The hidden geometry of complex, network-driven contagion phenomena, Science, 342, 1337-1342 (2013)
[27] Zhang, Z. K.; Liu, C.; Zhan, X. X.; Lu, X.; Zhang, C. X.; Zhang, Y. C., Dynamics of information diffusion and its applications on complex networks, Phys. Rep., 651, 1-34 (2016)
[28] de Arruda, G. F.; Rodrigues, F. A.; Moreno, Y., Fundamentals of spreading processes in single and multilayer complex networks, Phys. Rep., 756, 1-59 (2018) · Zbl 1405.90041
[29] Granell, C.; Gómez, S.; Arenas, A., Dynamical interplay between awareness and epidemic spreading in multiplex networks, Phys. Rev. Lett., 111, Article 128701 pp. (2013)
[30] Tejedor, A.; Longjas, A.; Foufoula-Georgiou, E.; Georgiou, T. T.; Moreno, Y., Diffusion dynamics and optimal coupling in multiplex networks with directed layers, Phys. Rev. X, 8, Article 031071 pp. (2018)
[31] Battiston, F.; Cencetti, G.; Iacopini, I.; Latora, V.; Lucas, M.; Patania, A.; Young, J.-G.; Petri, G., Networks beyond pairwise interactions: structure and dynamics, Phys. Rep. (2020)
[32] Matamalas, J. T.; Gómez, S.; Arenas, A., Abrupt phase transition of epidemic spreading in simplicial complexes, Phys. Rev. Res., 2, Article 012049 pp. (2020)
[33] M.T. Schaub, Random walks on simplicial complexes and the normalized Hodge 1-Laplacian, 2019, arXiv.org.
[34] de Arruda, G. F.; Petri, G.; Moreno, Y., Social contagion models on hypergraphs, Phys. Rev. Res., 2, Article 023032 pp. (2020)
[35] G.F. de Arruda, M. Tizzani, Y. Moreno, Phase transitions and stability of dynamical processes on hypergraphs, 2020, arXiv.org.
[36] Carletti, T.; Battiston, F.; Cencetti, G.; Fanelli, D., Random walks on hypergraphs, Phys. Rev. E, 101, Article 022308 pp. (2020)
[37] Gómez, S.; Arenas, A.; Borge-Holthoefer, J.; Meloni, S.; Moreno, Y., Discrete-time Markov chain approach to contact-based disease spreading in complex networks, EPL (Europhys. Lett.), 89, Article 38009 pp. (2010)
[38] Kahle, M., The neighborhood complex of a random graph, J. Comb. Theory, Ser. A, 114, 380-387 (2007) · Zbl 1110.05090
[39] Kozlov, D., Combinatorial Algebraic Topology (2008), Springer-Verlag Berlin Heidelberg · Zbl 1130.55001
[40] Bron, C.; Kerbosch, J., Algorithm 457: finding all cliques of an undirected graph, Commun. ACM, 16, 575-577 (1973) · Zbl 0261.68018
[41] Adams, H.; Tausz, A.; Vejdemo-Johansson, M., javaplex: a research software package for persistent (co)homology, (Mathematical Software, ICMS 2014 - 4th International Congress, Proceedings. Mathematical Software, ICMS 2014 - 4th International Congress, Proceedings, Conference Date: 05-08-2014 Through 09-08-2014. Mathematical Software, ICMS 2014 - 4th International Congress, Proceedings. Mathematical Software, ICMS 2014 - 4th International Congress, Proceedings, Conference Date: 05-08-2014 Through 09-08-2014, Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2014), Springer-Verlag), 129-136 · Zbl 1402.65186
[42] Johnson, J. H., Some structures and notation of q-analysis, Environ. Plan. B, Plan. Des., 8, 73-86 (1981)
[43] Shrestha, M.; Moore, C., Message-passing approach for threshold models of behavior in networks, Phys. Rev. E, 89, Article 022805 pp. (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.