×

zbMATH — the first resource for mathematics

Geometric invariant theory on Stein spaces. (English) Zbl 0728.32010
The aim of this paper is to present results on actions of compact Lie groups on Stein spaces. The main result is the following:
Complexification Theorem. Let K be a compact Lie group and \(K^{{\mathbb{C}}}\) a complexification of K. If K acts on a reduced Stein space X, then there exists a complex space \(X^{{\mathbb{C}}}\) with a holomorphic action \(K^{{\mathbb{C}}}\times X^{{\mathbb{C}}}\to X^{{\mathbb{C}}}\) and a K-equivariant holomorphic map i: \(X\to X^{{\mathbb{C}}}\) with the following properties:
(i) i: \(X\to X^{{\mathbb{C}}}\) is an open embedding and i(X) is a Runge subset of \(X^{{\mathbb{C}}}\) such that \(K^{{\mathbb{C}}}\cdot i(X)=X^{{\mathbb{C}}}.\)
(ii) \(X^{{\mathbb{C}}}\) is a Stein space.
(iii) If \(\Phi\) is a K-equivariant holomorphic map from X into a complex space Y on which \(K^{{\mathbb{C}}}\) acts holomorphically, then there exists a unique \(K^{{\mathbb{C}}}\)-equivariant holomorphic map \(\Phi^{{\mathbb{C}}}: X^{{\mathbb{C}}}\to Y\) such that the diagram commutes.

MSC:
32E10 Stein spaces, Stein manifolds
32M05 Complex Lie groups, group actions on complex spaces
22E10 General properties and structure of complex Lie groups
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Cartan, H.: ?uvres, Vol. I. Berlin Heidelberg New York: Springer 1979
[2] Chevalley, C.: Theory of Lie groups. Princeton: Princeton University Press 1946 · Zbl 0063.00842
[3] Dadok, J., Kac, V.: Polar representations. J. Algebra92, 504-524 (1985) · Zbl 0611.22009 · doi:10.1016/0021-8693(85)90136-X
[4] Grauert, H.: On Levi’s problem and the imbedding of real analytic manifolds. Ann. Math.68, 460-472 (1958) · Zbl 0108.07804 · doi:10.2307/1970257
[5] Grauert, H.: Set theoretic complex equivalence relations. Math. Ann.265, 137-148 (1983) · Zbl 0514.32005 · doi:10.1007/BF01460794
[6] Heinzner, P.: Linear äquivariante Einbettungen Steinscher Räume. Math. Ann.280, 147-160 (1988) · Zbl 0617.32022 · doi:10.1007/BF01474186
[7] Heinzner, P.: Kompakte Transformationsgruppen Steinscher Räume. Math. Ann.285, 13-28 (1989) · Zbl 0679.32030 · doi:10.1007/BF01442669
[8] Heinzner, P.: Fixpunktmengen kompakter Gruppen in Teilgebieten Steinscher Mannigfaltigkeiten. J. reine angew. Math.402, 128-137 (1989) · Zbl 0673.32026 · doi:10.1515/crll.1989.402.128
[9] Hochschild, G.: The structure of Lie groups. San Francisco London Amsterdam: Holden-Day 1965 · Zbl 0131.02702
[10] Jänich, K.: DifferenzierbareG-Mannigfaltigkeiten. (Lect. Notes Math., Vol. 9) Berlin Heidelberg New York: Springer 1968
[11] Kaup, W.: Infinitesimale Transformationsgruppen komplexer Räume. Math. Ann.160, 72-92 (1965) · Zbl 0146.31102 · doi:10.1007/BF01364336
[12] Kaup, W.: Reelle Transformationsgruppen und invariante Metriken auf komplexen Räumen. Invent. Math.3, 43-70 (1967) · Zbl 0157.13401 · doi:10.1007/BF01425490
[13] Kempf, G., Ness, L.: The length of vectors in representations spaces. In: Algebraic geometry. (Lect. Notes Math., Vol. 732, pp. 233-244) Berlin Heidelberg New York: Springer 1979 · Zbl 0407.22012
[14] Kraft, H.: Geometrische Methoden in der Invariantentheorie. Braunschweig Wiesbaden: Vieweg 1985 · Zbl 0669.14003
[15] Kraft, H., Slodowy, P., Springer, T.A.: Algebraische Transformationsgruppen und Invariantentheorie. DMV Seminar Bd. 13. Basel Boston Berlin: Birkhäuser 1989 · Zbl 0682.00008
[16] Lassalle, M.: Séries de Laurent des fonctions holomorphes dans la complexification d’un espace symétrique compact. Ann. Sci. Éc. Norm. Supér. IV Sér.11, 167-210 (1978) · Zbl 0452.43011
[17] Luna, D.: Slice etales. Bull. Soc. Math. Fr. Mem.33, 81-105 (1973)
[18] Luna, D.: Fonctions différentiables invariantes sous l’opération d’un groupe réductif. Ann. Inst. Fourier26, 33-49 (1976) · Zbl 0315.20039
[19] Luna, D.: Sur certaines opérations différentiables des groupes de Lie. Am. J. Math.97, 172-181 (1975) · Zbl 0334.57022 · doi:10.2307/2373666
[20] Luna, D.: Sur les orbites fermées des groupes algébriques réductifs. Invent. Math.16, 1-5 (1972) · Zbl 0249.14016 · doi:10.1007/BF01391210
[21] Mostow, G.D.: Some new decomposition theorems for semi-simple groups. Am. Math. Soc.14, 31-51 (1955) · Zbl 0064.25901
[22] Mostow, G.D.: On covariant fiberings of Klein spaces. Am. J. Math.77, 247-278 (1955) · Zbl 0067.16003 · doi:10.2307/2372530
[23] Procesi, C., Schwarz, G.: Inequalities defining orbit spaces. Invent. Math.81, 539-554 (1985) · Zbl 0578.14010 · doi:10.1007/BF01388587
[24] Reese, H.F., Wells, R.O.: Zero sets of non-negative strictly plurisubharmonic functions. Math. Ann.201, 165-170 (1973) · Zbl 0253.32009 · doi:10.1007/BF01359794
[25] Roberts, M.: A note on coherentG-sheaves. Math. Ann.275, 573-582 (1986) · Zbl 0595.32014 · doi:10.1007/BF01459138
[26] Rothaus, O.S.: Envelops of holomorphy of domains in complex Lie groups. In: Problems on analysis, 309-317. Princeton: University Press 1970 · Zbl 0212.10801
[27] Snow, D.M.: Reductive group action on Stein spaces. Math. Ann.259, 79-97 (1982) · Zbl 0509.32021 · doi:10.1007/BF01456830
[28] Streater, R.F., Wightman, A.S.: Die Prinzipien der Quantenfeldtheorie. Bibliographisches Institut Mannheim Zürich: Hochschultaschenbücherverlag 1969
[29] Warner, G.: Harmonic analysis on semisimple Lie groups, Vol. I. Berlin New York: Springer 1972 · Zbl 0265.22020
[30] Weyl, H.: The classical groups. Princeton, NJ. Princeton University Press 1946 · Zbl 1024.20502
[31] Zariski, O., Samuel, P.: Commutative algebra, Vol. I. Princeton, NJ: Van Nostrand 1961 · Zbl 0121.27801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.