×

zbMATH — the first resource for mathematics

Integrable initial-boundary-value problems. (English. Russian original) Zbl 0728.35114
Theor. Math. Phys. 86, No. 1, 28-36 (1991); translation from Teor. Mat. Fiz. 86, No. 1, 43-52 (1991).
Summary: Boundary initial value problems for integrable nonlinear equations are considered. Solutions of these problems with certain types of boundary conditions for the nonlinear Schrödinger equation and sine-Gordon equation are described in the scattering data terms.

MSC:
35Q53 KdV equations (Korteweg-de Vries equations)
35Q55 NLS equations (nonlinear Schrödinger equations)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] V. E. Zakharov et al., The Theory of Solitons. The Inverse Scattering Method [in Russian], Nauka, Moscow (1980). · Zbl 0598.35003
[2] B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, Usp. Mat. Nauk,31, 55 (1976).
[3] J. Moser, Lecture Notes in Phys.,38, 467 (1975). · Zbl 0323.70012
[4] M. A. Olshanetsky and A. M. Perelomov, Phys. Rep.,71, 313 (1981).
[5] E. K. Sklyanin, Funktsional. i Analiz Prilozhen.,21, 86 (1987).
[6] P. N. Bibikov and V. O. Tarasov, Teor. Mat. Fiz.,79, 334 (1989).
[7] R. F. Bikbaev and A. R. Its, Mat. Zam.,45, 3 (1989).
[8] A. S. Fokas, ?Initial boundary value problem for a class of nonlinear evolution equation,? Preprint INS-81, INS, New York (1987).
[9] F. Calogero and S. de Lillo, Nonlinearity, No. 2, 37 (1989). · Zbl 0685.35091
[10] I. T. Habibullin, Nonlinear and Turbulent Processes in Physics, World Scientific, Singapore (1990). · Zbl 0753.35092
[11] I. T. Khabibullin, Mat. Zam.,49, 40 (1991).
[12] V. E. Zakharov and A. B. Shabat, Funktsional. Analiz i Ego Prilozhen.,13, 13 (1979).
[13] R. K. Bullough and P. J. Caudrey (eds.) Solitons, Springer, Berlin (1980).
[14] S. V. Manakov and V. Yu. Novokshenov, Teor. Mat. Fiz.,69, 40 (1986).
[15] L. A. Takhtadzhyan and L. D. Faddeev, The Hamiltonian Approach in the Theory of Solitons [in Russian], Nauka, Moscow (1986). · Zbl 0632.58003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.