Křížek, Michal On semiregular families of triangulations and linear interpolation. (English) Zbl 0728.41003 Appl. Math., Praha 36, No. 3, 223-232 (1991). Summary: We consider triangulations formed by triangular elements. For the standard linear interpolation operator \(\pi_ h\) we prove the interpolation order to be \(\| v-\pi_ hv\|_{1,p}\leq Ch| v|_{2,p}\) for \(p>1\) provided the corresponding family of triangulations is only semiregular. In such a case the well-known Zlámal’s condition upon the minimum angle need not be satisfied. Cited in 33 Documents MSC: 41A05 Interpolation in approximation theory 65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs Keywords:Zlámal’s condition PDF BibTeX XML Cite \textit{M. Křížek}, Appl. Math., Praha 36, No. 3, 223--232 (1991; Zbl 0728.41003) Full Text: EuDML References: [1] I. Babuška A. K. Aziz: On the angle condition in the finite element method. SIAM J. Numer. Anal. 13 (1976), 214-226. · Zbl 0324.65046 [2] R. E. Barnhill J. A. Gregory: Sard kernel theorems on triangular domains with application to finite element error bounds. Numer. Math. 25 (1976), 215-229. · Zbl 0304.65076 [3] P. G. Ciarlet: The finite element method for elliptic problems. North-Holland, Amsterdam, New York, Oxford, 1978. · Zbl 0383.65058 [4] J. A. Gregory: Error bounds for linear interpolation on triangles. (in Proc. MAFELAP II J. R. Whiteman). Academic Press, London, 1976, 163-170. [5] P. Jamet: Estimations d’erreur pour des éléments finis droits presque dégénérés. RAIRO Anal. Numér. 10 (1976), 43-60. · Zbl 0346.65052 [6] P. Jamet: Estimations de l’erreur d’interpolation dans un domaine variable et applications aux éléments finis quadrilatéraux dégénérés. Méthodes Numériques en Mathématiques Appliquées, Presses de l’Université de Montreal, 55-100. [7] M. Křížek: On semiregular families of decompositions of a polyhedron into tetrahedra and linear interpolation. (in Proc. of the 6th Conf. Mathematical Methods in Engineering). ŠKODA, Plzeň, 1991, 269-274. [8] M. Křížek P. Neittaanmäki: Finite element approximation of variational problems and applications. Pitman Monographs and Surveys in Pure and Applied Mathematics vol. 50, Longman Scientific & Technical, Harlow, 1990. · Zbl 0708.65106 [9] J. Nečas: Les rnéthodes directes en théorie des équations elliptiques. Academia, Prague, 1967. [10] G. Strang G. J. Fix: An analysis of the finite element method. Prentice-Hall, INC., New Jersey, London, 1973. · Zbl 0278.65116 [11] J. L. Synge: The hypercircle in mathematical physics. Cambridge University Press, Cambridge, 1957. · Zbl 0079.13802 [12] A. Ženíšek: The convergence of the finite element method for boundary value problems of a system of elliptic equations. Apl. Mat. 14 (1969), 355- 377. [13] M. Zlámal: On the finite element method. Numer. Math. 12 (1968), 394-409. · Zbl 0176.16001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.