Boyanov, B. D. Optimal recovery of differentiable functions. (English. Russian original) Zbl 0728.41033 Math. USSR, Sb. 69, No. 2, 357-377 (1991); translation from Mat. Sb. 181, No. 3, 334-353 (1990). Optimal restoration of differentiable functions is investigated for \(W^ L_{\infty,\sigma}(I)=\{f\in L^ r_{\infty}(I):| Lf(x)| \leq \sigma (x),\quad \forall x\in I\},\) where L is a given differential operator of r-order, and \(\sigma\) (\(\cdot): I\to {\mathbb{R}}\) a given continuous function. Reviewer: J.Albrycht (Poznań) Cited in 1 Document MSC: 41A65 Abstract approximation theory (approximation in normed linear spaces and other abstract spaces) 46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems Keywords:Optimal restoration PDF BibTeX XML Cite \textit{B. D. Boyanov}, Math. USSR, Sb. 69, No. 2, 357--377 (1991; Zbl 0728.41033); translation from Mat. Sb. 181, No. 3, 334--353 (1990) Full Text: DOI