zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence results for the nonlinear complementarity problem and applications to nonlinear analysis. (English) Zbl 0728.90088
The author produces an existence result for the nonlinear complementarity problem associated to a weakly locally compact convex cone K in a Banach space E and to the difference J-F of two nonlinear operators. He specializes his result to the case where K is a so-called Galerkin cone, J is the duality mapping, and F satisfies a suitable growth condition. He also gives some applications to fixed point theory and to eigenvalue problems.
Reviewer: Z.Lin (Anshan)

MSC:
90C48Programming in abstract spaces
90C33Complementarity and equilibrium problems; variational inequalities (finite dimensions)
49J52Nonsmooth analysis (other weak concepts of optimality)
47H07Monotone and positive operators on ordered topological linear spaces
WorldCat.org
Full Text: DOI
References:
[1] Altman, M.: A fixed point theorem in Hilbert space. Bull. acad. Polon. sci. 5, No. No. 1, 19-22 (1957) · Zbl 0077.31902
[2] Asplund, E.: Averaged norms. Israel J. Math. 5, 227-233 (1967) · Zbl 0153.44301
[3] Attouch, H.: Variational convergence of functions and operators. (1984) · Zbl 0561.49012
[4] Borwein, J. M.: Alternative theorems for general complementarity problems. Proceedings of the Cambridge conference on infinite dimensional programming (1985) · Zbl 0591.90088
[5] Brezis, H.: Equations et inéquations non linéaires dans LES espaces vectoriels en dualité. Ann. inst. Fourier Grenoble 18, 115-175 (1968)
[6] Browder, F.; Hess, P.: Nonlinear mappings of monotone type in Banach spaces. J. funct. Anal. 11, 251-294 (1972) · Zbl 0249.47044
[7] Browder, F.: Multi-valued monotone nonlinear mappings and duality mappings in Banach spaces. Proc. amer. Math. soc., 338-351 (1965) · Zbl 0138.39903
[8] Cronin, J.: Eigenvalues of some nonlinear operators. J. math. Anal. appl. 38, 659-667 (1972) · Zbl 0238.47048
[9] Dajun, G. G.: Some fixed point theorems and applications. Nonlinear anal. Theory meth. Appl. 10, No. No. 2, 1293-1302 (1986) · Zbl 0613.47052
[10] Deimling, K.: Nonlinear functional analysis. (1985) · Zbl 0559.47040
[11] Diestel, J.: Geometry of Banach spaces, selected topics. Lecture notes in math. 485 (1975) · Zbl 0307.46009
[12] Dugundji, J.; Granas, A.: Fixed point theory. (1982) · Zbl 0483.47038
[13] Fan, K.: A minimax inequality and applications. Inequalities III (1972) · Zbl 0302.49019
[14] Gajun, G. G.: Some fixed point theorems and applications. Nonlinear anal. Theory meth. Appl. 10, No. No. 2, 1293-1302 (1986)
[15] Gwinner, J.: On fixed points and variational inequalities, a circular tour. Nonlinear anal. Theory meth. Appl. 5, No. No. 5, 565-583 (1981) · Zbl 0461.47037
[16] Hartman, P.; Stampacchia, G.: On some nonlinear elliptic differential functional equations. Acta math. 115, 271-310 (1966) · Zbl 0142.38102
[17] Holmes, R. B.: Geometric functional analysis and its applications. (1975) · Zbl 0336.46001
[18] Isac, G.: Nonlinear complementarity problem and Galerkin method. J. math. Anal. appl. 108, 563-574 (1985)
[19] Isac, G.; Thera, M.: Complementarity problem and post-critical equilibrium state of thin elastic plates. J. optim. Theory appl. 58, 241-257 (1988) · Zbl 0631.49005
[20] Isac, G.; Thera, M.: A variational principle. Applications to the nonlinear complementarity problem. Lecture notes in pure and applied math. 107, 127-145 (1987) · Zbl 0639.49007
[21] G. Isac, Private communication.
[22] Krasnoselskii, M. A.; Zabreiko, P. P.: Geometrical methods of nonlinear analysis. 338 (1984)
[23] Lindenstrauss, J.; Tzafriri, L.: Classical Banach spaces. Lecture notes in math. 338 (1973) · Zbl 0259.46011
[24] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. (1969)
[25] Shinbrot, M.: A fixed point theorem and some applications. Arch. rational mech. Anal. 17, 253-271 (1965)
[26] Sonntag, V.: Convergence au sens de mosco: théorie et applications à l’approximation des solutions d’inéquations. Thèse d’etat (1982)
[27] Stampacchia, G.: Variational inequalities, theory and applications of monotone operators. (1969) · Zbl 0167.11501
[28] Théra, M.: Lakshmikantham Proceedings of the international conference on nonlinear analysis and applications. Proceedings of the international conference on nonlinear analysis and applications, 573-577 (1987)
[29] Weber, V. H.: \vartheta-asymptotisches spectrum und surjektivitätssätze von Fredholm typ für nicht lineare operatoren mit anwendungen. Math. nachr. 117, 7-35 (1984) · Zbl 0605.47055
[30] Zeidler, E.: Nonlinear functional analysis and its applications III. Variational methods and optimization (1985) · Zbl 0583.47051