×

Robust tracking and regulation of linear periodic discrete-time systems. (English) Zbl 0728.93065

Summary: The robust asymptotic tracking and disturbance rejection problem is studied for linear periodic discrete-time systems, and for general classes of disturbance functions and reference signals, consisting in free responses of periodic processes. The necessary and sufficient conditions for the existence of a solution, which involve the periodic notion of invariant zero, are found. A constructive design procedure of the periodic compensator is given; it is based on the internal model principle.

MSC:

93D20 Asymptotic stability in control theory
93C40 Adaptive control/observation systems
93C55 Discrete-time control/observation systems
93C05 Linear systems in control theory
93C35 Multivariable systems, multidimensional control systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1109/TAC.1986.1104205 · doi:10.1109/TAC.1986.1104205
[2] DOI: 10.1007/BFb0043803 · doi:10.1007/BFb0043803
[3] DOI: 10.1080/0020718508961171 · Zbl 0566.93006 · doi:10.1080/0020718508961171
[4] DOI: 10.1137/0322056 · Zbl 0549.93008 · doi:10.1137/0322056
[5] DOI: 10.1109/TAC.1986.1104172 · Zbl 0606.93036 · doi:10.1109/TAC.1986.1104172
[6] CHEN C. T., Linear Svstem Theory and Design (1984)
[7] DOI: 10.1109/TAC.1967.1098658 · doi:10.1109/TAC.1967.1098658
[8] COLANERI P., Preprints of the llth IF AC World Congress 2 pp 144– (1990)
[9] DOI: 10.1007/BF01183242 · Zbl 0724.93039 · doi:10.1007/BF01183242
[10] DOI: 10.1080/00207177908922714 · Zbl 0407.93031 · doi:10.1080/00207177908922714
[11] DOI: 10.1109/TAC.1976.1101137 · Zbl 0326.93007 · doi:10.1109/TAC.1976.1101137
[12] DOI: 10.1016/0005-1098(75)90022-9 · Zbl 0319.93025 · doi:10.1016/0005-1098(75)90022-9
[13] DOI: 10.1109/TAC.1978.1101696 · Zbl 0388.93030 · doi:10.1109/TAC.1978.1101696
[14] DOI: 10.1137/0122006 · Zbl 0242.93024 · doi:10.1137/0122006
[15] DOI: 10.1109/TASSP.1985.1164633 · doi:10.1109/TASSP.1985.1164633
[16] FLAMM D. S., Proceedings of the American Control Conference 90 2 pp 1510– (1990)
[17] DOI: 10.1137/0315033 · Zbl 0382.93025 · doi:10.1137/0315033
[18] DOI: 10.1007/BF01447855 · Zbl 0351.93015 · doi:10.1007/BF01447855
[19] GRASSELLI O. M., Ricerche di Automatica 3 pp 44– (1972)
[20] DOI: 10.1016/0005-1098(79)90069-4 · Zbl 0401.93005 · doi:10.1016/0005-1098(79)90069-4
[21] GRASSELLI O. M., New Trends in System Theory (1990)
[22] DOI: 10.1080/00207178108922978 · Zbl 0464.93056 · doi:10.1080/00207178108922978
[23] DOI: 10.1080/00207178608933483 · Zbl 0583.93044 · doi:10.1080/00207178608933483
[24] GRASSELLI O. M., Proceedings 2nd IF AC Symposium on Multivariable Technical Control Systems (1971)
[25] HALL S. R., Proceedings of the American Control Conference 90 2 pp 1518– (1990)
[26] DOI: 10.1080/00207178908953366 · Zbl 0684.93039 · doi:10.1080/00207178908953366
[27] IKEDA M., I.E.E.E. Transactions on Circuit Theory 20 pp 193– (1973) · doi:10.1109/TCT.1973.1083656
[28] DOI: 10.1109/9.21089 · Zbl 0676.93020 · doi:10.1109/9.21089
[29] KALMAN R. E., SIAM Journal of Control 1 pp 152– (1963)
[30] DOI: 10.1109/TAC.1985.1103850 · Zbl 0577.93004 · doi:10.1109/TAC.1985.1103850
[31] DOI: 10.1109/TAC.1985.1103841 · Zbl 0573.93013 · doi:10.1109/TAC.1985.1103841
[32] DOI: 10.1109/TAC.1981.1102806 · Zbl 0465.93050 · doi:10.1109/TAC.1981.1102806
[33] DOI: 10.1080/00207178008922850 · Zbl 0443.93044 · doi:10.1080/00207178008922850
[34] DOI: 10.1109/TAC.1984.1103621 · Zbl 0544.93022 · doi:10.1109/TAC.1984.1103621
[35] DOI: 10.1109/TCS.1979.1084633 · Zbl 0399.94018 · doi:10.1109/TCS.1979.1084633
[36] DOI: 10.1016/0024-3795(89)90655-1 · Zbl 0678.93022 · doi:10.1016/0024-3795(89)90655-1
[37] DOI: 10.1109/TCS.1975.1084020 · doi:10.1109/TCS.1975.1084020
[38] DOI: 10.1080/00207178608933588 · Zbl 0589.93041 · doi:10.1080/00207178608933588
[39] DOI: 10.1109/CDC.1989.70329 · doi:10.1109/CDC.1989.70329
[40] PERDON A. M., Preprints of the 11th IF AC World Congress 2 pp 241– (1990)
[41] RTCHARDS J. A., Analysis of Periodically Time-Varying Systems (1983)
[42] ROSENBROCK H. H., State-space and Multivariable Theory (1970) · Zbl 0246.93010
[43] DOI: 10.1016/0005-1098(77)90037-1 · Zbl 0346.93016 · doi:10.1016/0005-1098(77)90037-1
[44] DOI: 10.1109/CDC.1988.194682 · doi:10.1109/CDC.1988.194682
[45] DOI: 10.1109/TCS.1984.1085583 · Zbl 0548.94030 · doi:10.1109/TCS.1984.1085583
[46] DOI: 10.1080/00207178308932993 · Zbl 0502.93052 · doi:10.1080/00207178308932993
[47] WONHAM W. M., Linear Multivariable Control–a Geometric Approach (1979) · Zbl 0424.93001
[48] ZHENG L., Proceedings of the IF AC Symposium on Adaptive Systems in Control and Signal Processing pp 131– (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.